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1 Introduction

With increasing concern over climate change there is much interest in how new technologies can

help reduce greenhouse gas emissions like Carbon Dioxide (CO2). Most climate change models

assume exogenous technological change (e.g. Stern, 2006), but dealing with the challenge of global

warming almost certainly requires more climate change related innovation (e.g. Henderson and

Newell, 2011). But what policies can be used to achieve this?

Recent models of climate change with endogenous technical progress suggest that the market will

generate insufficient innovation to reduce climate change and too much R&D investment directed

at “dirty” technologies. For example, in Acemoglu et al. (2012) there is path-dependence in the

direction of technical change. Firms in economies that have innovated a lot in dirty technologies

in the past will find it more profitable to innovate in dirty technologies in the future. This path

dependency feature when combined with the environmental externality (whereby firms do not factor

in the loss in aggregate productivity or consumer utility induced by environmental degradation) will

induce a laissez-faire economy to produce and innovate too much in dirty technologies compared to

the social optimum. This in turn calls for government intervention to “redirect” technical change.

For redirected technical change to be effective, the associated clean products need to be perceived

as substitutes for dirty products by consumers. Cars are a good example of this as electric and

hybrid vehicles are potential substitutes for vehicles based on internal combustion engines (another

example would be renewable energy plants vs. fossil fuel plants).1 Furthermore, transport accounts

for around a quarter of worldwide CO2 emissions, making it the second biggest greenhouse gas

1Innovations in fuel efficiency will also help combat climate change, but these will be offset if consumers respond by
driving more. There are limits to how far this incremental innovation on an existing dirty technology can effectively
reduce emissions. Our focus here is on more radical changes to vehicles depending on alternative cleaner fuel types.
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emitting sector after energy production.2 Consequently, the automobile sector is the focus of study

in our paper. Note that even with such substitutable products as autos, however, there may be

decreasing returns to dirty innovation and so the market would do part of the job of redirecting

technical change towards clean technologies. Thus empirically evaluating the effects of past stocks

of innovation on future trajectories has to be part of the aggregate dynamic evaluation of different

policies.

In this paper, we construct new panel data on auto innovations to examine how firms redirect

technical change in response to carbon prices in the context of path dependent innovation. Our main

data are drawn from the European Patent Office’s World Patent Statistical database (PATSTAT).

These data cover close to the population of all worldwide patents (and their citations) since the

beginning of the 20th century. To mitigate the well-known problem that many patents are of very

low value, our innovation outcome measure focuses on “triadic” patents which are those that have

been taken out in all three of the world’s major patents offices: the European Patent Office (EPO),

the Japanese Patent Office (JPO) and the United States Patents and Trademark Office (USPTO).3

Our results are robust to alternative ways to controlling for heterogeneous patent values such as

using wider categories of patents like biadics (US and EPO) or weighting by future citations.

In automobiles since 19784 around 6,500 triadic patents in “clean” technologies (electric vehicles,

hybrid vehicles, fuel cells for hydrogen vehicles, etc.) were filed versus about 18,500 triadic patents

in “dirty”technologies which affect regular combustion engines.5 Moreover, our database reports

2See http://www.wri.org/project/cait
3Triadic patents have been used extensively as a way to focus on high-value patents (Grupp et al., 1996; Grupp,

1998; Dernis, Guellec and van Pottelsberghe, 2001; Dernis and Khan, 2004; Guellec and van Pottelsberghe, 2004).
4Since the EPO was created in 1978 the triadic patent data only starts in that year.
5Overall, since the beginning of the 20th century, about 213,000 patents in “clean” technologies were filed world-

wide, versus about 760,000 patents in “dirty”.
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the name of patent applicants which in turn allows us to match clean and dirty patents with distinct

patent holders each of whom has her own history of clean versus dirty patenting.6

Our main results can be summarized as follows. First, higher (tax-inclusive) fuel prices induce

firms to redirect technical change towards clean innovation and away from dirty innovation. Second,

a firm’s propensity to innovate in “clean” technologies appears to be stimulated by its exposure

to past clean patents (and vice versa for dirty technologies) consistent with the path-dependency

hypothesis. We measure this exposure by (i) an aggregate spillover index based on the (pre-sample)

location of the firm’s inventors across different countries combined with the changes in the country-

specific stocks of clean and dirty auto patents since 1965; and (ii) the firm’s own lagged stocks of

clean and dirty innovations. In general econometric models including the carbon prices and both

path dependency variables we find evidence for both firm-specific and aggregate path dependency.

Our paper relates to two main strands of literature. First, the literature on climate change, start-

ing with Nordhaus (1994) who developed a dynamic model of climate change (the DICE model),

which amounts to adding equations linking production to emissions into a Ramsey model. Subse-

quent contributions to this literature have looked at the implications of risk and discounting for

the optimal design of environmental policy7 or have looked at the choice between taxes and quotas,

building on Weitzman (1974).

Second, our paper relates to the literature on directed technical change, in particular Acemoglu

(1998, 2002; 2008) which itself was inspired by early contributions by Hicks (1932) and Habakkuk

6We do not consider radical innovations in upstream industries such as biofuels, for instance. To explore this is
beyond the scope of the current paper which takes the more positive approach of exploring the determinants of clean
innovation in vehicles.

7In particular see Stern (2006), Weitzman (2007, 2009), Dasgupta (2007, 2008), Nordhaus (2007), von Below
and Persson (2008), Mendelsohn (2007), and Tol and Yohe (2006). More recent work by Golosov et al. (2009)
characterizes the optimal policy in a model with exhaustible privately-owned resources.
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(1962).8 Also closely related to our paper is the empirical literature linking environmental policy

and directed technical change. In particular, Popp (2002) uses aggregate U.S. patent data from

1970 to 1994 to study the effect of energy prices on energy-efficient innovations. He constructs

two different measures of the knowledge stocks for the innovation regressions: (a) simple stock of

previously U.S. granted patents and (b) future citation weighted stock of patents. In particular,

he finds a significant impact from both, energy prices and the quality of the stock of knowledge

available to the inventor, on directed innovations. This in turn reflects directed technical change as

a response to change in energy prices. However since Popp uses aggregate data a concern is that

his regressions also capture macro-economic shocks correlated with both innovation and the energy

price. In this paper, we use international firm-level data which allows us to exploit differences in

the extent to which firms in different countries are affected by policy-induced shocks to the energy

price (e.g. fuel taxes). We can, for example, control for global macro shocks with a full set of time

dummies. Further evidence of directed technical change applied to the context of saving energy can

be found in Newell, Jaffe and Stavins (1999) which focuses on the air-conditioning industry, or in

Crabb and Johnson (2010) who look at energy-efficient automotive technology. However, neither of

these papers use multi-country data nor analyze whether there is path dependency in the direction

of technical change. Hassler, Krussell and Olovsson (2011) find evidence for a trend increase in

energy saving technologies following high oil prices. More ambitiously, papers such as Acemoglu,

Akcigit, Hanley and Kerr (2012) and Golosov, Hassler, Krussell and Tsyvinski (2011) put these into

8The theoretical literature on directed technical change is well developed. See for example Messner (1997), Grubler
and Messner, (1998), Goulder and Schneider (1999), Manne and Richels (2002), Nordhaus (2002), Van der Zwaan
et al. (2002); Buonanno et al (2003), Nordhaus (2002), Sue Wing (2003) and Gerlagh (2008). in contrast, directed
technical change has rarely been empirically tested. However, see Acemoglu and Linn (2004) and more recently
Hanlon (2012) who shows how relative price changes induced by the Union blockade during the American Civil War
induced British textile innovation in machines using Indian cotton.
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a full blown quantitative dynamic general equilibrium model to examine optimal carbon taxes.

The paper is organized as follows. Section ?? develops a simple model to guide our empirical

analysis. Section ?? presents the econometric methodology. The data is presented in Section ??

and some descriptives in Section ??. Section ?? presents the results, discusses their robustness and

some extensions. In Section ?? we explore the implications of our results for the evolution of future

clean and dirty knowledge stocks and how this evolution would be affected by changes in the carbon

price. Section ?? concludes.

2 Model

In this section we present a simple model to guide our empirical analysis. This model rationalizes

path dependence in firms’ own knowledge stock as well as the impact of a change in the price of

fuel on clean and dirty innovation. We then show how one can add knowledge spillovers and energy

efficiency innovations (“grey innovations”) to our framework.

2.1 Basic framework

We consider a one-period model of an economy where consumers derive utility from an outside good

and from motor vehicle services. Utility is quasi-linear with respect to the outside good C0 (chosen

as the numeraire) and β is the elasticity of consumption of motor vehicle services with respect to

its index price. To consume motor vehicle services, consumers need to buy cars and fuel (call it a

“dirty car bundle ”) or cars and electricity (call it a “clean car bundle ”). Utility is then given by.

U = C0 +
β

β − 1

((∫ 1

0

min (yci, ξcei)
σ−1
σ di

) σ
σ−1

ε−1
ε

+

(∫ 1

0

min (ydi, ξdgi)
σ−1
σ di

) σ
σ−1

ε−1
ε

) ε
ε−1

β−1
β

,
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where ei is the amount of electricity consumed for variety i of clean car, gi is the amount of fuel

consumed for variety i of dirty cars, ε is the elasticity of substitution between the clean and dirty

cars, σ is the elasticity of substitution among varieties within each type of car and ξc (respectively

ξd) is the energy efficiency of clean (respectively dirty) cars. We assume that 1 < ε ≤ σ, so that

clean cars are more substitutable with each other than with dirty cars, and that ε > β: the elasticity

of substitution between clean and dirty cars is larger than the price elasticity for cars as a whole.

We denote by fc the price of electricity and fd the price of fuel. In the first part of the analysis

innovation will be cost saving for producers, but later in this section we investigate energy saving

innovation.

Cars are produced by local monopolists, and each monopolistic firm i produces one clean and

one dirty variety with current productivities Azi, z = c, d in the respective sectors. That is, it takes

1
Aci

units of the outside good as input for firm i to produce one unit of clean car; similarly it takes

1
Adi

units of the outside good as input for firm i to produce one unit of dirty car.

To complete the description of the model, we need to specify the innovation technology. Here, we

assume that at the beginning of a period, by incurring total cost 1
2
ψx2zi entrepreneurs can increase

their productivities in clean cars (Aci) and dirty cars (Adi) according to:

Azi = (1 + xzi)Azi0 for z ∈ {c, d} .

2.2 Solving the model

Define the price indexes for dirty and clean car bundles as:

Pz =

(∫ 1

0

(
pzi +

fz
ξz

)1−σ
) 1

1−σ

, for z ∈ {c, d} .
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Inverse demand curves for clean and dirty cars are then given by

yzi =

(
pzi +

fz
ξz

)−σ

P σ−ε
z

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε for z ∈ {c, d} . (1)

Firm i’s maximization problem can be expressed as:

max
yci,ydi

πi = pciyci −
1

Aci

yci + pdiydi −
1

Adi

ydi.

where yzi for z ∈ {c, d} are given by (??).

This yields the following expressions for the equilibrium profits on clean and dirty cars sales by

firm i:

πzi =
(σ − 1)σ−1

σσ

(
1

Azi

+
fz
ξz

)1−σ

P σ−ε
z

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε for z ∈ {c, d} .

2.3 Firms’ innovation efforts

We assume that ψ is sufficiently large that the equilibrium innovation intensities xci and xdi are

uniquely defined by the first order conditions:.

xzi =
1

ψ

∂πci
∂xci

=
(σ − 1)σ

ψσσ

1

Azi0 (1 + xzi)
2

(
1

Azi0 (1 + xzi)
+
fz
ξz

)−σ

P σ−ε
z

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε for z ∈ {c, d} .

(2)

Path dependence on firm’s own history. The equilibrium innovation intensities xzi increase

in the firm’s corresponding technology stocks Azi0 as long as the right hand side of (??) increases in

Azi0, which in turn is satisfied if the elasticity of substitution σ is sufficiently large.9. In this case,

there is path dependence in clean and dirty innovation.10

9The precise condition is (σ−1)
Azi0(1+zci)

> fz
ξz
, which is also satisfied if the price of fuel represents a sufficiently small

share of the total costs of a car.
10Alternatively, one could have assumed that the cost function takes the following form Ψ (xc, xd) =

1
2

(
ψx2c + ψx2d + χ (xc + xd)

2
)
, for χ ̸= 0, there would be strategic substitutability in innovation efforts on clean

versus dirty technologies within firms. A large stock of dirty knowledge would discourage clean innovation. However,
we did not find empirical support for this hypothesis.
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Redirecting innovation through changes in the fuel price. We now investigate the impact

of a change in the fuel price on clean and dirty innovation. Totally differentiating (??) for z = c

with respect to the fuel price, and then using the notation X̂ = dX
X
,we get:

(1− ω) x̂ci =

(
σ − ε+ (ε− β)

P 1−ε
c

P 1−ε
c + P 1−ε

d

)
P̂c + (ε− β)

P 1−ε
d

P 1−ε
c + P 1−ε

d

P̂d, (3)

where ω ≡ d
dxzi

ln

(
1

(1+xzi)
2

(
1

Aci0(1+xci)
+ fz

ξz

)−σ
)
< 1.11

For sufficiently small innovation intensities, one can neglect the indirect impact of an increase

in fuel price via the innovation response of other firms, so that P̂c ≈ 0, and P̂d has the sign of f̂d.
12

Then:

(1− ω) x̂ci ≈ (ε− β)
P 1−ε
d

P 1−ε
c + P 1−ε

d

P̂d.

This in turn implies that the equilibrium intensity of clean innovation increases with fuel price

since we assumed ε ≥ β.

Similarly, we get:

(1− ω) x̂di ≈ σ

(
P̂d −

fd
ξd

1
Adi

+ fd
ξd

f̂d

)
−
(
ε

P 1−ε
c

P 1−ε
c + P 1−ε

d

+ β
P 1−ε
d

P 1−ε
c + P 1−ε

d

)
P̂d (4)

once we neglect the indirect impact of a change in fuel price on the price indexes working through

the innovation response.

The second term has the opposite sign from that of f̂d: namely, an increase in fuel price reduces

the benefit of dirty innovation both because it induces substitution towards clean cars and because

it reduces the overall consumption of cars.

11That ω be less than 1 follows from the fact that at the equilibrium the left-hand side of (??) crosses the right-hand
side from below.

12Another reason to neglect this indirect impact is that firms typically operate in several markets, with different
exposures to each market for each firm. Therefore the allocation of innovation of the competitors does not depend
only on the fuel price in a given country but also on the fuel price in other countries.
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The first term would be zero if all firms had the same dirty technologies, otherwise it has the

sign of f̂d for the least productive dirty firms and the opposite sign otherwise. This term captures

a reallocation effect of an increase in fuel price from most to least productive dirty firms. But, for

“average firms” for which
fd
ξd

1
Adi

+
fd
ξd

f̂d ≈ P̂d, dirty innovation decreases with the fuel price.

Overall, our analysis suggests that an increase in fuel price should decrease dirty innovation

intensity (as long as the firm’s initial productivity in dirty technologies is not too low compared to

that of other firms) and it should increase clean innovation intensity.

2.4 Extensions

Knowledge spillovers. In the empirical part of the paper we investigate not only the effects of

firms’ own past knowledge but also the effects of aggregate knowledge spillovers across firms in the

country where innovation occurs. To introduce the possibility of such aggregate spillovers in our

model, one can simply assume that each producer i benefits from positive knowledge spillovers from

a set Ωi of varieties with average technologies Aci and Adi, for example if the R&D cost function

is of the form 1
2

(
ψ
(
Aci

)
x2ci + ψ

(
Adi

)
x2di
)
, where ψ is a decreasing function of its argument. This

extension directly yields that clean innovation increases with the aggregate stock of clean knowledge

and dirty innovation with the aggregate stock of dirty knowledge.

“Grey” innovation. Innovations in the car industry may also involve improvements in energy

efficiency. Innovations that increase energy efficiency for clean cars would not react differently to

an increase in fuel price than cost reducing innovations

Now, let us analyze innovations that improve dirty energy efficiency. More specifically, suppose

that at the beginning of every period, a firm can increase its energy efficiency from ξdi0 to ξdi =

(1 + xξi) ξdi0 if it spends
1
2
ψx2ξi units of the outside good in R&D. We refer to this type of innovations
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as “grey” innovations. The equilibrium intensity in grey innovation is given by

xξi =
(σ − 1)σ

ψσσ

fd

ξdi0 (1 + xξi)
2

(
1

Adi0 (1 + xci)
+

fd
ξdi0 (1 + xξi)

)−σ

P σ−ε
d

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε .

For sufficiently high ψ, i.e for small innovation intensity, totally differentiating with respect to the

fuel price leads to:

(1− ω) x̂ξi ≈ σ

(
P̂d −

fd
ξdi

1
Adi

+ fd
ξdi

f̂d

)
−
(
ε

P 1−ε
c

P 1−ε
c + P 1−ε

d

+ β
P 1−ε
d

P 1−ε
c + P 1−ε

d

)
P̂d + f̂d.

This expression is similar to (??) except for the last term which captures a direct positive effect of an

increase in the fuel price on energy efficiency innovation. The overall impact of an increase in the fuel

price on grey innovation is therefore theoretically ambiguous. In the case where all dirty firms have

similar productivities (both in grey and in dirty technologies), and where the clean bundle is much

more competitive than the dirty one this expression simplifies into (1− ω) x̂ξi ≈
(
1− β

fd
ξd

1
Ad

+
fd
ξd

)
f̂d,

so that the impact of an increase in fuel price on grey innovation is negative when the price of fuel

is a large share of the total cost of a dirty car bundle and the price elasticity of the dirty car bundle

is large. What happens then is that as the fuel price increases, the negative impact on innovation

of the reduction in the demand for dirty cars is larger than the positive impact of a bigger marginal

benefit for grey innovations.

We use the term ”grey innovations” as the impact of these innovations on the environment is

also ambiguous: on the one hand these innovations increase energy efficiency and therefore reduce

the amount of fuel consumption per car; on the other hand these innovations make fossil fuel cars

cheaper, thereby increasing total consumption of these cars. Formally, one gets

gi =
ydi
ξdi

=
σ

σ − 1

1

ξdi

(
1

Adi

+
fd
ξdi

)−σ

P σ−ε
d

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε ,
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so that

dgi
dξdi

=

(
(σ − 1)

fd
ξdi

− 1

Adi

)
1

ξ2di

(
1

Adi

+
fd
ξdi

)−σ−1
σ

σ − 1
P σ−ε
d

(
P 1−ε
c + P 1−ε

d

) ε−β
1−ε ,

which is ambiguously signed. The expression is negative if the price of fuel is sufficiently low relative

to other costs, but it is positive if the elasticity of substitution across cars is sufficiently large.

Empirically, our definition of dirty innovation is a mix of these grey innovations that improve

energy efficiency for internal combustion engines and purely dirty innovations. We will therefore

show the robustness of the results to the exclusion and inclusion of grey innovation.

2.5 Summarizing our main predictions

We have presented a model of clean versus dirty innovation, in which we predict:

1. producers have a higher propensity to innovate in clean than dirty the larger the fuel price,

fd.

2. for σ sufficiently high, producers have a higher propensity to innovate in clean technologies the

higher A0
c and the lower A0

d, i.e. the higher their initial stock of clean versus dirty technologies

3. producers have a higher propensity to innovate in clean (respectively, dirty) technologies the

higher the aggregate level of clean (respectively, dirty) technology in neighboring varieties or

in the aggregate economy.

We now confront these three predictions with our panel data on clean and dirty innovation in

the auto industry.
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3 Econometrics

3.1 General approach

Consider the following Poisson (or more generally any log-link) specification for the determination

of firm innovation in “clean” technologies13, as measured by patents:

PATCLEAN,it = exp(βC,P lnFP it + AC,it) + eC,it (5)

where PATClean,it is the number of patents applied for in clean technologies by firm i in year t; ACit

is the firm’s knowledge stock relevant for clean innovation at the beginning of year t, which depends

both upon its own stocks of past clean and dirty innovation and upon potential aggregate spillovers

from other firms (discussed below), eC,it is an error term and FP it is our primary price policy

variable. Since no country has established meaningful carbon pricing yet, we use tax-inclusive fuel

prices for the various countries in our sample, exploiting cross-country variations in taxation and

differential firm-specific market exposure. We also test the robustness of our results to explicitly

using fuel taxes as the policy variable. Because different firms operate differentially in geographical

markets (for example GM has some “home bias” towards the US market whereas Toyota has a

“home bias” towards the Japanese market) they are differently exposed to tax changes in different

countries. This home bias could be due to product differentiation and heterogeneous tastes or it

may result from government policies to promote domestic firms (e.g. trade barriers). To take this

heterogeneity into account we construct a firm-specific policy variable. More specifically, we use

the firm’s history of patent filing across countries to assess the relative importance of the various

markets the firm is operating in and then construct firm-specific weights on fuel prices - as well as

13In our regressions we use an equivalent equation for dirty technologies. We initially discuss only one of these
equations to simplify the notation.
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other policy and control variables - from the corresponding markets. We discuss this in more detail

in the Data Section, but the basic idea is that firms will seek greater IP protection in those markets

that they deem will seem more important in the future.14

We consider several measures of a firm’s knowledge stock, as our theory implies that the history

and exposure of the firm to different types of innovation will matter. In particular we parameterize

the knowledge stock as:

ACit = βC,1 lnSPILLC,it + βC,2 lnSPILLD,it + βD,3 lnKC,it + βD,4 lnKD,it (6)

Since we expect that firms “stand on the shoulders of giants”, their knowledge stock will depend on

knowledge spillovers from other firms which in turn could be both in clean technologies (SPILLC,it)

and in dirty technologies (SPILLD,it). We construct the spillover pools in different ways, but our

baseline measures use the past stocks of total clean or dirty patents since 1978.

Drawing on the evidence that knowledge has a local component (e.g. Jaffe, Trajtenberg, and

Henderson, 1993) we use the firm’s pre-sample distribution of inventors across countries to weight

the country spillover stocks. In other words, if the firm has many inventors in the US (regardless

of whether the HQ of the firm is in Tokyo or Detroit) then the knowledge stock in the US is given

a higher weight (see Data Section). The firm’s knowledge may also depend on its own past history

of innovation and we denote this as KC,it (past own stock of clean innovation) and KD,it (past own

stock of dirty innovation).15

14The measure is far from perfect of course as the costs and benefits of IP vary between countries (e.g. China is
a fast growing market but patents are weakly protected. Since these factors are reasonably common across firms,
however, how filing rates differ across countries at the firm level should still reveal something about beliefs over
relative importance.

15We construct stocks using the perpetual inventory method, but then show robustness to using non-parametric
distributions of patent flows and to considering alternative assumptions over knowledge depreciation rates. See Data
Section.
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There are of course other factors that will influence innovation in addition to the carbon price

and the past history of innovation. These include policy measures such as R&D incentives for

clean innovation and controls over emissions; the size and wealth of the country (proxied by GDP

and GDP per capita) which we denote by the vector wC,it and other unobservable factors that we

control for through introducing a firm fixed effect (ηC,i), a full set of time dummies (Tt) and an error

term that is uncorrelated with the right hand side variables (uC,it). Adding these extra terms and

substituting equation (??) into (??) gives us our main estimating equation for clean innovation:

PATCLEAN,it = exp(βC,P lnFP it + βC,1 lnSPILLC,it + βC,2 lnSPILLD,it

+ βC,3 lnKC,it + βC,4 lnKD,it

+ βC,wwit + ln ηC,i + TC,t) + uC,it (7)

Similarly, we can derive an estimating equation for dirty innovation:

PATDIRTY,it = exp(βD,P lnFP it + βD,1 lnSPILLC,it + βD,2 lnSPILLD,it

+ βD,3 lnKC,it + βD,4 lnKD,it

+ βD,wwit + ln ηD,i + TD,t) + uD,it (8)

The theory yields predictions on the coefficients in these two equations. If the carbon tax induces

more clean than dirty innovation then the marginal effect of the fuel price must be larger on clean

innovation than on dirty innovation: βC,P > βD,P . Typically we would expect that βC,P > 0

and βD,P < 0, however this is not a necessary condition for redirecting technical change relatively

towards clean (e.g. the fuel price could depress clean innovation, but depress dirty innovation by

far more - cf Gans, 2011).

Next, for there to be path dependence in the direction of innovation it must be that (ceteris

paribus) firms that are exposed to stronger dirty spillovers become more prone to conduct dirty

15



innovation rather than clean innovation: βD,2 > 0 and βD,2 > βC,2. And path dependence may

involve similar effects working through a firm’s own accumulated knowledge: βD,4 > 0 and βD,4 >

βC,4. Also, we would expect that the effect of dirty spillovers and dirty knowledge stocks on dirty

innovation be larger than the effects of clean spillovers and clean knowledge stocks: βD,2 > βD,1

and βD,4 > βD,3. The reverse predictions should apply for the clean equation: βC,2 < βC,1 and

βC,4 > βD,1

3.2 Dynamic count data models with fixed effects

Our main regression equations are (??) and (??) which we can re-write succinctly as

PATzit = exp (xitβz) ηzi + uzit (9)

where z ∈ {DIRTY,CLEAN}, xit is the vector of regressors and uzit = exp(vzit).

In the results section we present a number of econometric specifications that seek to control for

firm fixed effects ηzi in these dynamic non-linear count data models. Further details are provided

in Appendix A (see also Blundell, Griffith and Windmeijer, 2002 and Cameron and Trivedi, 2005).

The traditional estimator is the the Hausman, Hall and Griliches (1984, HHG) approach which

is analogous to the standard within groups method in linear panel data (least squares dummy

variables). The disadvantage of HHG is that it requires strict exogeneity just like the within groups

estimator and this assumption will be violated by the lagged dependent variables in our path

dependent models. Quasi-differenced GMM procedures such as Chamberlain (1992) that do not

require strict exogeneity tend to have poor finite sample properties due to the problem of weak

instruments.

In response to these problems, Blundell, Griffith and Van Reenen (1999, 1995, BGVR) propose

a “mean scaling” estimator using information on the long history of patents in the pre-estimating
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sample period to control for unobserved heterogeneity. Essentially this is a control function approach

where we use a proxy (functions of the pre-sample average levels of firm innovation) to control for

the bias associated with unobserved fixed effects.

A potential problem with BGVR in our context is that the number of clean innovations only

takes off in the mid 1980s (see Figure 4) so the pre-sample estimator may not do a good job at

controlling for the fixed effect in the clean equations. Consequently, we develop a third econometric

model which we label CFX, the Conditional Fixed Effects estimator. Rather than using information

from the pre-sample period to calibrate the control function like BGVR, we use future data. Using

the analogy with linear dynamic panel data whereas BGVR uses long backward differencing, CFX

uses forward orthogonal deviations (see Arellano and Honore, 2005; Arellano, 2003). Essentially

we estimate the main regression equation simultaneously with a second equation for the control

function. Full details are provided in Appendix A.

Below, we provide results using CFX, BGVR and HHG. We also contrast these results to simple

log-linear OLS models where we add an arbitrary constant (unity) to the patents variables in order

to take logarithms. Although all these methods deliver similar qualitative results we focus on the

CFX as our baseline specification as it should be more robust to the econometric problems discussed

above.

4 Data

4.1 Main dataset

Our main data are drawn from the World Patent Statistical Database (PATSTAT) maintained by

the European Patent Office.16 Patent documents are categorized using the international patent

16PATSTAT is available from the EPO at http://www.epo.org/searching/subscription/raw/product-14-24.html
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classification (IPC) and national classification systems. We have extracted all the patents per-

taining to “clean” and “dirty” technologies in the automotive industry. “Dirty” includes patents

related to the internal combustion engine. “Clean” includes patents specifically related to clean car

technologies such as electric, hybrid and hydrogen vehicles. Our selection of relevant IPC codes for

clean technologies follows the same procedures as the OECD.17 The precise description of the IPC

codes used to identify relevant patents can be found in Table 1.

To measure innovation, we use counts of patent applications. The advantages and limitations

of patenting as a measure of innovation have been discussed at length in the literature.18 For our

purposes, the main advantage of using patent data is that they are available at a highly disaggre-

gated level. In particular, we can distinguish innovations in the auto industry according to specific

technologies, such as control systems specially designed for hybrid vehicles. R&D investment cannot

be disaggregated by type of innovation in this way. Further, R&D is not reported for many small

and medium sized firms, especially in Europe and in the US privately listed firms are also exempt

from the accounting requirement to report R&D. Moreover, autos are a large, R&D intensive sector

where patents are perceived as a reasonably efficient means of protection against imitation (Cohen

et al., 2000).19 These considerations make patents a reasonably good indicator of innovative activity

in the sector.

However, patent-based indicators also suffer from a number of limitations. The first is that

patents are not the only way to protect innovations, although a large fraction of the most economi-

17See OECD (2011) www.oecd.org/environment/innovation, Vollebergh (2010) and Hačič et al (2008).
18See Griliches (1990) and for a recent overview, OECD (2009).
19Cohen et al. (2000) conducted a survey questionnaire administered to 1478 R&D labs in the U.S. manufacturing

sector. They rank sectors according to how effective patents are considered as a means of protection against imitation,
and find that the top 3 industries according to this criterion are medical equipment and drugs, special purpose
machinery and automobile.
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cally significant innovations appear to have been patented (Dernis et al., 2001). Another problem is

that patent values are highly heterogeneous with most patents having a very low valuation. Finally,

the number of patents that are granted for a given innovation varies significantly across patent

offices with concerns over increasing laxity in recent years particularly in the US (e.g. Jaffe and

Lerner, 2004).

To mitigate these problems, we focus on “triadic” patents20 which are those patents that have

been taken out in all three of the world’s major patents offices: the European Patent Office (EPO),

the Japanese Patent Office (JPO) and the United States Patents and Trademark Office (USPTO).21

Focusing on triadic patents has a number of advantages. First, triadic patents provide us with a

common measure of innovation worldwide, which is robust to administrative idiosyncracities of the

various patent offices. For example, if the same invention is covered by one patent in the US and

by two patents in Japan, all of which are part of the same triadic patent family, we will count it

as one single invention. Secondly, triadic patents cover only the most valuable inventions,22 which

explains why they have been used so extensively to capture high-quality patents (Grupp et al., 1996;

Grupp, 1998; Dernis, Guellec and van Pottelsberghe, 2001; Dernis and Khan, 2004; Guellec and

van Pottelsberghe, 2004). Thirdly, triadic patents typically protect inventions that have a potential

worldwide application. These patents are thus relatively independent of the countries in which they

are filed. This is important for us as we will regress innovation activity on a weighted average of

20To identify triadic patents we use the INPADOC dataset in PATSTAT. For details on the construction of patent
families see Martinez, 2010.

21In fact, following standard practice we use all patents filed at the EPO and JPO and granted by the USPTO.
This is because the USPTO only revealed granted patents until 2001, when they changed policy. For consistency we
thus consider only triadic patents granted by the USPTO both before and after 2001. For the official definition of
triadic patents and how triadic patent families are constructed, see Dernis and Kahn, 2004, and Martinez, 2010.

22It has been empirically demonstrated that the number of countries in which a patent is filed is correlated with
other indicators of patent value (see, for example, Lanjouw et al, 1998, Harhoff et al, 2003).
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fuel prices across various countries (see below).

Our data set includes 6,419 “clean” and 18,652 “dirty” triadic patents.23 Since the EPO was

created in 1978 our triadic patent data only starts in that year. The last year of fully comprehensive

triadic data is 2005, so this is our end year.24 Our basic dataset consists of all those applicants (both

firms and individuals) who applied for at least one of these clean or dirty auto patents. We identify

3,423 distinct patent holders, which breaks down into 2,427 companies and 996 individuals. Our

results are robust to dropping individuals, but it seems more natural to include “garage” inventors

who may be more radical than firms. For every patent holder we subsequently identify the number

of clean, dirty and “other” (i.e. neither clean nor dirty) triadic patents. We also extract other

pieces of information based on this sample. For example, we identify all the other patents filed by

holders of at least one clean or dirty triadic patent, which represents a total of 4,467,362 patent

applications.

4.2 Tax-inclusive fuel prices

To estimate the impact of a carbon tax on innovation in clean and dirty technologies, we use

information on fuel prices and fuel taxes. Data on tax-inclusive fuel prices are available from the

International Energy Agency (IEA) for 25 countries (including some non-OECD countries), from

1978 onwards.25 Since data are available for both diesel and gasoline fuels, we construct a time-

varying country-level fuel price defined as the average of diesel and gasoline prices. The average

23In total, the PATSTAT data set includes 213,668 “clean” and 762,708 “dirty” patent applications. We thus focus
on the high end of the distribution in terms of patent quality.

24The number of triadic patent families in all technologies (i.e., not clean/dirty related) drops starting in 2006.
This is because of time lags between application and grant date at the USPTO.

25The IEA reports some incomplete data for an additional 13 countries.
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fuel price across these 25 countries for our regression period 1986-200526 are shown on Figure 1A.

Following a peak in the early 1980s, prices have remained broadly flat until the late 1990s when

they rose. Average taxes have increased steadily during the 1990s (see Figure 1B).

What is more striking, however, is the high degree of heterogeneity across countries in the annual

change in fuel prices, much of it being driven by cross-country differences in tax policies (see Figures

2 and 3). This heterogeneity will help us identify the effect of variations in fuel prices on innovation

in a way which is firm-specific. An important issue noted above is that data on fuel prices are

available only at the country level, whereas we would like to also exploit across firm variation. A

related issue is that the car market is global and government policies abroad might be at least

as important for firms’ innovation decisions as domestic policies in the country where the firm is

headquartered, especially for smaller countries. It is likely, however, that some markets matter more

for some auto firms than others. This is for two reasons. First, auto manufacturers have different

styles of vehicles reflecting their heterogenous capabilities and branding. Consequently, demand

for a firms’ products will be more popular in some nations than others depending on local tastes

(e.g. Berry et al, 1995; Goldberg, 1995). Second, there is typically some home bias towards car

makers that are considered to be “national champions” in national tastes and government policies

(for example, the recent auto bailouts in Detroit and elsewhere). The upshot of this is that auto

firms display heterogeneous current and expected future market shares across nations and their

R&D decisions will be more influenced by prices and policies in some countries than others.

To operationalize this idea we construct a fuel price variable for each firm as a weighted average

of fuel prices across countries based on a proxy of where the firm expects to sell cars in the future.

26In our baseline regressions we use data up until 1985 as a pre-sample period required for the BGVR estimator
and to construct patent portfolio and inventor weights as discussed further below.
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Our price index is defined as:

lnFP it =
∑
c

wP
ic lnFP ct (10)

where Pct is the tax-inclusive fuel price in country c at time t and wP
ic is a firm-specific weight.

The weight is determined by the importance of that country as a market outlet for that particular

firm. We measure this as the proportion of the firm’s total auto-related patents taken out in county

c. The rationale for doing this is that a firm will seek intellectual property (IP) protection in

jurisdictions where it believes it will need to sell in the future (even if it licenses the technology, the

value of license will depend on whether it has obtained IP protection in relevant growth markets).

For every patent applied for, we know that the patenting firm has paid the cost of legal protection

in a discrete number of countries. For example, a firm may choose to enforce its rights in all EU

countries or only in a subset of EU countries, say Germany and the UK. Similarly, the firm may

decide to apply for patent protection in the US but not in smaller markets. In order to reflect the

greater importance of larger countries, we also weight by each country’s average GDP over 1965-

1985. Finally, in order to make sure that the computed exposures are a (weakly) exogenous source

of variation across firms, the weights are calculated using the patent portfolio of each company over

the 1965-1985 “pre-sample” period, whereas we run regressions over the period 1986-2005.27 We

then perform robustness tests using different pre-sample periods to check that nothing important

is driven by the precise year of cut-off (e.g. 1965-1990 and estimate from 1990-2005).

Why not use an alternative weighting scheme which simply reflects where firms currently sell

their products (e.g. Bloom, Schankerman and Van Reenen, 2010)? First, we believe that the

information on where firms choose to take patent protection is a potentially better measure because

it reflects their expectations of where their future markets will be (which is relevant for R&D

27For further details see the Data Appendix.
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decisions). Second, there is a data constraint: although sales distributions by geographic area are

available for larger firms they are not available for smaller firms - and there are many patents from

these smaller firms. We show our weights compared to sales weights for some of the largest car

firms in Table 2 - Toyota, Volkswagen, Ford, Honda and Peugeot. The correlation is generally

high between the two (0.95) suggesting that the weights we choose do a reasonable job at reflecting

market shares.28

4.3 Patent and spillover stocks

Firm patent stocks are calculated in a straightforward manner using the patent flows (PATz,it)

described above. Following Cockburn and Griliches (1988) and Peri (2005), the patent stock is

calculated using the perpetual inventory method:

Kzit = PATzit + (1− δ)Kzit−1 (11)

where z ∈ {DIRTY,CLEAN}. We take δ, the depreciation of R&D capital, to be equal to 20%, as

is commonly assumed in the literature, but we check the robustness of our results to other plausible

values of this parameter.

To construct aggregate spillovers for a firm, we use information on the geographical location

of the various inventors in that firm. These are geographically located regardless of nationality of

the firm’s headquarters or the location of the office where the patent was filed (e.g. the patents

of Toyota’s scientists working in US labs contribute to the US spillover pool). Implicit in our

approach is the view that the geographical location of an inventor is likely to be a key determinant

of knowledge spillovers rather than the jurisdiction over which the patent is taken out (which matters

28One exception is that Volkswagen appears to have a much higher patent share in Germany (it’s home country)
than its sales would suggest.
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more as a signal of where the market for sales is likely to be). Many papers have documented the

importance of the geographical component of knowledge spillovers in patents and other indicators

(e.g. Henderson, Jaffe and Trajtenberg, 1993, 2005 and Griffith, Lee and Van Reenen, 2011).

Importantly, the distribution of the patent portfolio across countries and the distribution of

inventors vary considerably across firms. This is illustrated in Figure A1. To construct a firm-

specific spillover pool we use an analogous empirical strategy to that for the fuel price. The spillover

weight wS
ic is the share of all firm i’s inventors (i.e. where the inventors lived and worked) in country

c between 1965 and 1985. The spillover pool for firm i can then be calculated by:

SPILLzit =
∑
c

wS
icSPILLzct (12)

where z ∈ {DIRTY,CLEAN} and SPILLzct is the spillover pool in country c at time t. The

spillover pool in country c at time t, SPILLzct is defined as:

SPILLzct =
∑
j ̸=i

wS
jcKzjt (13)

i.e. the spillover pool of a country for firm i is the sum of all other firms patent stocks that have

inventors in the country (weighted by the number of inventors). The aggregate stocks in (??)

are thus entirely based on firm level stocks. This allows us to make out of sample simulations

of aggregate stocks using firm level equations only. As an alternative strategy we could simply

construct country level spillover stocks by aggregating over all patents of inventors based in that

country:

SPILLzct =
∑

j∈Inventors based in c

Kz,jt (14)

where Kzict = PATzit+(1−δ)Kzjct−1 and PATzjt are the patents filed that associated with inventor

j in year t. In our baseline specification both methods give very similar results. For consistency

with our simulation results we use the first method (equation (??)) throughout the paper.
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As noted above, a common problem is that patents values are highly heterogeneous. We mitigate

this problem by conditioning on triadic patents, which screen out the very low value patents. But

we also do two other checks. First, we weight patents by the number of future citations. Second,

we use “biadic” patents filed at the EPO and at the USPTO, following Henderson and Cockburn

(1993) who argued that patents were important if they had been applied in at least two of the three

major economic regions. Our results are robust to these two variants.

5 Descriptive statistics

5.1 Aggregate statistics

Aggregate patenting in clean and dirty technologies has been rising over time (see Figure 4): the

number of triadic patents in dirty technologies rose steadily between 1978 and 1988 and then again

between 1992 and 2000. It has been decreasing during the last five years of our dataset. The

number of clean patents remained very low for a decade and a half after 1980 before rising sharply

between 1995 and 2002, reaching 724 in 2002. The rate of innovation has been stable subsequently.

As a consequence, while the number of clean patents represented only 10% of the number of dirty

patents during the 1980s, this ratio has grown to around 60% by 2005.

Clean and dirty patents are identified using a number of relevant International Patent Classifi-

cation (IPC) codes. Table 1 shows the definitions of the IPC classes that we use to identify clean

and dirty auto patent which follows OECD definitions. Patents relevant to the internal combustion

engine are relatively straightforward to define (IPC Code F02 excluding sub-classes C/G/K). Clean

innovations include those pertaining to electric, hybrid and hydrogen vehicles and the relevant sub-

classes as shown in Table 1. The PATSTAT database holds information about the set of countries

where the same invention is patented.
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For every patent in our data set we know whether the invention has also been filed (prior to or

following the filing of the patent at USPTO, EPO and JPO) at any other patent office included in

PATSTAT (over 80 offices). When a patent is filed, it must include citations to earlier patents that

are related to the new invention. Citations to earlier patents - or backward citations - are indicative

of the accumulated knowledge used by the inventor to develop the new invention (e.g. Jaffe and

Trajtenberg, 2002). We collect this information from the PATSTAT database. This represents

181,151 citations for all clean and dirty triadic patents included in our data set, which amount to

13.1 citations for the average patent. Table 3 reports the distribution of citations between clean and

dirty categories. We see that among the patents cited by clean patents, 47% are clean, whereas 5%

are dirty. The remaining 48% refer to other – i.e. neither clean or dirty – patents. To get a sense

of what these figures imply, suppose that spillovers between clean and dirty patent categories were

uniform; i.e. a clean patent – on average – facilitates subsequent clean innovation no more than it

would facilitate subsequent dirty innovation and vice versa. Considering that even at the end of

our sampling period there are about two times as many dirty patents as there are clean patents

(see Figure 4), we would expect that the likelihood of a clean or dirty patent citing a dirty patent

be at least three times higher than that of the clean patent citing a clean patent. Interestingly,

we find that the likelihood of a clean on clean citations (47%) is almost as high as the likelihood

of dirty on dirty citations (59%), suggesting that within category spillovers are vastly higher than

between category spillovers. This suggests path-dependence in the direction of innovation as the

theory suggests. We will formally test this in the next section.
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5.2 Firm patent portfolios

Table 4 displays the top 10 patenters in clean technologies between 1978 and 2005 and Table

5 displays the top 10 patenters in dirty technologies between 1978 and 2005. They show the

predominance of Japanese and German companies. An interesting finding from Tables 4 and 5 is

that the vast majority of top innovators in clean technologies are not strictly specialized in this field.

Most top companies’ patent portfolios include both clean and dirty patents. The only exception is

Samsung SDI, a battery specialist. Recall that this is based on triadic patents and US companies

tend to file disproportionally more patents in just the US than in Europe and Japan. This explains

why companies such as General Motors is not among the top 10 patenters in terms of triadic patents.

In order to illustrate this further we present in Tables 6 to 9 the top 10 clean and dirty patenters

at the EPO and at the USPTO (Table 8). We find for example that General Motors is the third

largest patenter of clean technologies at the USPTO. While it is clear that there a number of

big companies active in both clean and dirty automotive patenting, computing a Herfindahl Index

(HHI) for patenting over 1978 to 2005 for clean innovation we find a HHI of 0.023 and for dirty we

find a HHI of 0.038, both of which reflect a low degree of concentration. The top 10 patent holders

in clean account for 35.6% of patents over 1978 to 2005 whereas the corresponding figure is 46.6%

for dirty, suggesting that innovation in dirty is more concentrated than innovation in clean.

Descriptive statistics for our dataset used in the regressions are shown in Table 10. We condition

on firms who have produced at least one clean or dirty triadic patent since 1978. In any given year,

the average number of dirty patents is 0.22 and the average number of clean patents is 0.08.
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6 Results

6.1 Main Results

Our main results are shown in Table 11. The first three columns use the flow of a firm’s clean

patents as the dependent variable and the last three columns use the flow of dirty patents as the

dependent variable. All estimates include firm fixed effects using the CFX approach (described in

detail in Appendix ??), year dummies and country GDP per capita (using the same weights as

we do for fuel prices). We experimented with a wide range of other country specific variables and

report some of the important ones below.29 In column (1), we observe that higher tax inclusive

fuel prices have a significantly positive correlation with clean patents with an elasticity of around

unity. A 10% higher fuel price is associated with about 10% more clean patents. The spillovers and

lagged patent stocks take signs consistent with the path dependency hypothesis. Firms who were

more exposed to clean innovation by other firms (“clean spillovers”) are significantly more likely

to produce clean patents, whereas those benefiting more from dirty spillovers are significantly less

likely to innovate in clean technologies. A 10% increases in clean spillovers is associated with a 4%

increase in clean patenting whereas a 10% increases in dirty spillovers is associated with a 3% fall

in clean patenting.

In addition to path dependence at the economy level through spillovers, path dependence also

appears at the firm level. Firms which have innovated in clean technologies in the past are much

more likely to continue to do so in the future. According to column (1) in Table 11 a 10% increase

in lagged clean innovation stocks is associated with an increase of 5% in current clean innovation.

A history of dirty innovation is also associated with more clean innovation, but this coefficient of

29Other country variables (GDP, population, inflation, etc. ) did not appear to be robustly significant in our more
general models.
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0.25 is much smaller than both the coefficient on the lagged stock of clean innovation (0.51) and

the corresponding coefficient in the dirty equation of column (4) of 0.64. In other words, a history

of dirty innovation helps both types of innovation in the future but is more important for for future

dirty innovation, leading to path dependence in the type of innovation.

Column (2) of Table 11 includes R&D subsidies for clean technologies and column (3) includes a

control for emission regulations. Neither of these additional policy variables is significant. Moreover,

the point estimate on the tax inclusive fuel price hardly change, which suggests that our results are

not driven by a correlation between fuel prices and other country-level policies.

Column (4) of Table 11 repeats the specification of column (1) but uses dirty patents as the

dependent variable. The coefficient on fuel prices is negative and significant as expected indicating

that a 10% increase in prices is associated with a 5.3% decrease in dirty innovation. The signs on on

the spillovers and own firm lagged innovation are broadly symmetric to those in the clean equation.

Exposure to clean spillovers reduces dirty patenting, exposure to dirty patenting fosters it. A history

of either dirty or clean patenting has a positive effect on further clean patenting, however the effect

of dirty patenting is stronger. Importantly, both for spillovers and own knowledge stocks we have

that own effects (e.g. clean on clean) are stronger than the corresponding cross effects (e.g. dirty

on clean) thus meeting the necessary condition for path dependence to occur.

In summary, Table 11 appears to offer considerable support for our model. First, higher carbon

prices significantly encourage clean innovation and have a negative effect on dirty innovation; and

second there is path dependence in the direction of technical change: countries and firms that have

a history of relatively more clean (dirty) innovation are more likely to innovate in clean (dirty)

technologies in the future.
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6.2 Alternative dynamic count data models

Table 12 considers alternative econometric approaches to deal with count data models and unob-

served fixed heterogeneity. First, we control for fixed effects in our Poisson model following the

Hausman, Hall et al approach (“HHG”) in column (1) for clean patents and column (3) for dirty

patents. The signs of coefficients are generally the same as in our baseline models, but the marginal

effect of fuel price is much greater in absolute magnitude for dirty innovation and smaller (and

insignificant) for clean. Indeed, the magnitude of the estimated elasticity for dirty patents seems

unreasonably large, a 10% increase in fuel prices being associated with a 24.5% decrease in dirty

innovation. We suspect that the assumption of strict exogeneity underlying HHG is problematic in

our context, as we have a highly dynamic specification.

Columns (2) and (4) of Table 12 implement the Blundell et al (1999) estimator (“BGVR”) .

The pattern of the spillover effects and dynamics remain similar to the baseline regression, and

we still obtain a positive and significant effect of fuel prices on clean innovation and an negative

and significant effect on dirty innovation. The value of the fuel price coefficients are comparable to

the baseline case. The elasticity of fuel prices on clean patenting is 0.672 which a bit smaller than

Table 11 (0.992), whereas in the dirty equation it is -0.614 slightly larger in absolute magnitude

than Table 11 (-0.539). BGVR produces somewhat larger values for path dependency (e.g. the

effects of lagged clean knowledge stocks on current clean patenting) than in the baseline results

which may be because the BGVR approach is not fully controlling for fixed effects.

The final two columns of Table 12 present an even simpler model where we use relative patenting

in clean ln
(

1+PATCLEAN,it

1+PATDIRTY,it

)
as the dependent variable in an OLS regression. Column (5) shows that

there is a significant and positive effect of fuel prices on relative clean innovation. Column (6)

shows that this result is robust to including a full set of country by year fixed effects to absorb any
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potential country specific time varying policy variables.

6.3 Extensions and robustness

Table 13 repeats regressions for our three main count data approaches (BGVR, HHG and CFX) but

restricts the sample to firms which had at least one patent filed prior to 1985. This leads to small

changes in the point estimates but no changes in the overall qualitative patterns. Table 14 repeats

our regressions using just fuel taxes (rather than the tax-inclusive fuel prices used until now). The

results are comparable to the baseline results, although one difference is that the absolute magnitude

of the coefficients on taxes are smaller for both types of innovation. This is to be expected if firms

are guided by fuel prices and fuel suppliers bear some of the cost burden of a tax.

In Table 15 use a longer pre-sample period to construct weights (1965-1990) and run the regres-

sions only on the 1991 to 2005 to period. The coefficients are again comparable, although some

of the fuel price variables are no longer significant presumably due to smaller sample size. Impor-

tantly, we always find a significantly different point estimate for fuel price on clean and on dirty,

consistent with there being directed technological change. In Table 16 we report regressions based

on biadic rather than triadic patents; i.e. we include all innovations into the construction of the

innovation and knowledge stock variables that are registered with the EPO and the USPO but not

necessarily the Japanese patent office. As a consequence the size of our sample increases slightly,

but the results do not change much. In Table 17 we construct the knowledge stock variables -

including the spillover variables - using citation weighted counts for all worldwide patents. This

leads to results which are similar in qualitative terms; i.e. it remains true that the price response

is larger for clean patents than for dirty patents ensuring a clean inducing price effect. Equally, the

relative size of the knowledge and spillover stocks continue to be consistent with path dependence.
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However, the price effects on clean with both CFX and BGVR are now implausibly high with an

implied elasticity of more than 2. Also, the spillover effects tend to be much larger whereas the own

stock effects are diminished. An explanation for this could be that using citation weights is prone to

larger measurement errors than using multi patent office patenting. However, these measurement

errors tend to be smoothed out when computing the aggregative spillover stocks so that they affect

the own stocks more.

7 Simulation results

Our regression results imply that there is path dependence in the type of innovation pursued, both

through internal knowledge stock effects and through external spillovers. Here we explore how

strong this path dependence is in quantitative terms by studying the simulated future evolution of

both clean and dirty knowledge stock implied by our fitted models. In particular we are interested

to see under which conditions the clean knowledge stock for the aggregate economy exceeds the

dirty knowledge stock. In line with Acemoglu et at. (2012) this would be a requirement for clean

technologies to be able to compete with dirty ones, even without policy intervention. Our projections

should be considered as an exploration into the strength of path dependence rather than necessarily

realistic forecasts of future patenting.

We recursively compute values of expected patenting under different policy scenarios, use those

to update the knowledge stock variables (including the spillover variables) and feed them into the

next iteration.30 Hence if we split the right hand side variables xit in equation (??) into variables

that are functions of the knowledge stock (kit) and other variables such as the fuel price(pit), we

30Below we also provide simulation runs providing recursively generated knowledge stocks over the sample period
(1986-2005). We can compare those to the actual values to further examine the quality of our empirical models.
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can write xit = [kit, pit] and a particular iteration is defined by:

P̂AT zit+T = exp
(
kit+T−1βkz + pCF

it+T−1βpz
)
ηzi (15)

where kit+T = f
(
kit+T−1, P̂ATCLEAN,t+T , P̂ATDIRTY,t+T

)
and where P̂ATCLEAN,t+T , P̂ATDIRTY,t+T

are predicted future patent flows for firms in the sample and pCF
it+T are potentially counterfactual

values of the policy and other control variables. We focus our exploration on periods up to 2030 with

2020 as a focal point. This is somewhat arbitrary but in line with scenarios by the International

Energy Agency (IEA)31 suggesting that globally fossil fuel use must peak by that year to avoid

highly risky climate change. It is also consistent with the European Commission’s 2020 targets.32

Figure 5 reports simulations based on the regressions from Table 13 columns (1) and (4). The

knowledge stocks in clean and dirty technologies are reported on the y-axes.33 In Figure 5A we

report the baseline case without any changes to policy variables compared to their 2005 values.34

We see that our regressions imply that path dependence is strong enough to lead to the economy

becoming ever more locked into dirty technologies; i.e. the aggregate knowledge stock grows much

faster over time than the clean knowledge stock so that the initial advantage of dirty widens over

time. In panel B we see that this remains true even if we increase fuel prices globally by 10%. In

this scenario, however, the clean stock grows faster and the dirty stock more slowly than in Panel

A. The same pattern is repeated in Panel C when we increase prices by 20%, but in neither case

will clean overtake dirty before 2003. Panel C shows that for a 30% price increase clean overtakes

31http://blogs.ft.com/energy-source/2009/11/10/fossil-fuel-use-must-peak-by-2020-warns-iea/#axzz1tQmZyLoy
32see http://ec.europa.eu/news/economy/100303 en.htm
33For the simulations we restrict the sample to the firms where we have pre sample information. In this way we

do not have to make further assumptions as to how changes in the spillover and policy variables would affect firms
where these variables are essentially missing.

34We equally keep other exogenous variables such as GDP per capita at their 2005 levels, as well as the year fixed
effect.
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dirty by 2030 and Panel D shows that for clean and dirty parity by 2020 we need an increase in

price in the order of 40%.

In Figure 6 we explore the importance of own lagged innovation vs. spillovers in leading to

path dependence. In Panels A and B we report simulations where we fix the spillover variables at

2005 levels and only update own innovation stocks when simulating future changes. In Figure 6A

we find that the gap between dirty and clean increases more slowly over time compared to Figure

5A. This is not surprising given that both own knowledge stock effects and spillovers imply path

dependence and Figure 6A switches off spillovers. While this might look like better news for clean

innovation, it is now also the case that any efforts to help clean through fuel price increases are

less effective, as we have switched off one channel through which they feed through the economy.

Hence in Figure 6B we see that a fuel price increase of 40% is no longer enough to tip the balance

between clean and dirty by 2020. In other words, path dependence acts as a double-edge sword: it

increases the gap between dirty and clean technologies in a status quo situation, but facilitates a

catch-up of clean technologies when the fuel price increases. The same happens when in Figures 6C

and 6D where we fix own lagged knowledge capital stocks at 2005 levels and only update spillovers.

Note that quantitatively, spillover effects on current innovation are smaller than effects from own

knowledge stocks. Consequently, the series grow logarithmically in Figures 6C and 6D rather than

exponentially in Figures 6A and 6B.

Finally in Figure 7 we fix both own stocks and spillovers. We then explore how aggregate flows

respond to successively increasing the fuel price. Hence we can ask: “By how much would we have

to increase carbon prices to have the flow of clean exceed the flow of dirty patents?” We can think

of this as a kind of upper bound estimate to tip the balance in favour of clean by means of a fuel

price intervention. From the graph we see that this requires a very large fuel price increase on the
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order of 120%. Figure A3 in appendix shows simulation results for HHG and BGVR models. In

both cases we find as in the baseline CFX case that without price increases clean will not catch

up with dirty innovation stocks. In quantitative terms the simulated knowledge stocks for dirty

knowledge are comparable to CFX in the HHG case but are growing much faster in the BGVR case.

This is a result of the larger estimates for lagged own knowledge stocks found in the regressions

above. Nevertheless, in terms of fuel price increases that are required for clean knowledge stocks to

get ahead of dirty within a 15 year horizon we find a comparable although somewhat smaller order

of magnitude. For both BGVR and HHG the turning point is at approximately a 30% increase. In

Figure A4 we examine the required price increase to bring about higher flows of clean from the base

year onwards. Not surprisingly35 for HHG this is rather low at around 75% whereas for BGVR it is

around 120%, similar to the value found in the baseline estimates. Finally, we compute simulated

knowledge stocks for our sample period (1986-2005) which we can compare to actual knowledge

stocks. The results are reported in Figure A4. Both CFX and HHG track the actual dynamics

rather well. BGVH tends to overestimate the growth of dirty knowledge stocks and underestimate

the observed growth of clean knowledge stocks.

8 Conclusion

In this paper we have combined several patent datasets to analyze directed technical change in

autos, which is a key industry of concern for climate change innovations. Consistent with a simple

model, we find that “clean” innovation does positively respond to increases in the tax-inclusive fuel

prices, exploiting the fact that prices evolve differentially across countries and firms are differentially

exposed to these price changes because of their different expected sales profiles across geographical

35Considering the point estimates of the fuel price coefficients in Table 14.
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markets. Our second key result is that there is strong evidence of “path dependence” in the sense

that firms with more inventors exposed to clean innovation are more likely to direct their research

energies to clean innovation in the future (a directed knowledge spillover effect). Similarly, firms

with a history of clean innovation in the past are more likely to focus on clean innovation in the

future.

The fact that such path dependence holds for clean (as well as for dirty) innovation highlights

the desirability of acting sooner to shift incentives for climate change innovation. Since the stock

of dirty innovation is greater than that of clean innovation, the path dependence effect (“building

on the shoulders of giants”) will tend to lock economies into high carbon emissions, even after the

introduction of a mild carbon tax or R&D subsidies for clean. This in turn reinforces the case

for stronger action now, which could be relaxed in the future as the economy’s stock of knowledge

shifts in more of a clean direction. While there is some difference in quantitative terms across the

different econometric models, there is a remarkable consistency across specifications to the effect

that without further policy intervention clean technologies will not catch up with the more advanced

dirty technologies. Increases in carbon price instead can bring about a change in direction. Our

baseline results suggest an increase of 40% of fuel prices with respect to the 2005 price will allow clean

innovation stocks to overtake dirty stocks after fifteen years. These estimates depend upon multiplier

effects of a given price increase working through knowledge stocks and aggregate spillovers. Our

analysis could be extended in several directions. One extension would be to use micro data to

estimate the relative efficiency of R&D investments in clean versus dirty innovation, and also the

elasticity of substitution between the two types of production technologies. As argued in Acemoglu

et al (2012), these parameters play as important a role as the discount rate in characterizing the

optimal environmental policy. These and other equally important extensions are left for further
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research.
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Web Appendix for “Carbon Taxes, Path
Dependence and Directed Technical Change:

evidence from the Auto Industry”

A Econometric Models

We separately examine clean and dirty patent counts using a standard Poisson model

PATzit = exp (xitβz) ηzi + uzit (16)

where z∈ {DIRTY,CLEAN} and xit is a vector of regressors including functions of the lagged
dependent variable. For identification we assume E(uzit|xit) = 0.36 We consider four alternative
estimation techniques that allow for the possibility of firm level fixed effects ηzit in the propensity
to patent. The standard approach is Hausman, Hall and Griliches (1984, HHG) who suggest a
transformation akin to the within groups estimator in the linear panel data context. In GMM terms,
their estimator can be expressed as relying on the following moment condition for identification (e.g.
Blundell, Griffith, Windmeijer, 2002):

E

{(
PATzit − µzit

¯PATzi
µ̄zi

)
xkit

}
= 0

for all variable in xit where µzit = exp (xitβz) and a bar represents the average of a variable over
time for a specific firm. Note that

PATzit − µzit

¯PATzi
µ̄zi

= uit −
µzit

µ̄zi

ūzit

implying that we require strict exogeneity, i.e. the shock uzit must be uncorrelated with xit not only
contemporaneously, but in all periods; i.e. E {uzit|xiτ} = 0 for all t and τ . When using regressors
that depend on past realizations of the dependent variable such as the knowledge capital stocks,
this assumption is violated.

36Note that we can equivalently represent the model in terms of a multiplicative shock νzit with E(νzit|xit) = 1.
We would have

νzit = 1 +
uzit

exp (xitβz) ηzi

and our assumptions concerning uzit imply E(νzit|xit) = 1.
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Blundell, Griffith and Van Reenen (1999, BGVR) proposed an alternative estimator which is
robust to relaxing the strict exogeneity assumption. It relies on introducing a control function term
for the fixed effects, which is identified from realizations of the dependent variable in a pre-sample
period. Hence, the idea is to think of the fixed effect as the combination of a control term ϕ (·)
and an error, ωi.

ηzi = ϕ
(
ln ¯PAT zi0, I

{
¯PAT zi0 = 0

})
+ ωi

where ¯PAT zi0 is the average amount of patenting by firm i in the pre-sample period. BGVR show
that with ϕ (·) = exp

(
ϕzl ln ¯PAT zi0 + ϕz2I

{
¯PAT zi0 = 0

})
, pre-determined xit

37 and stationarity
in the dynamic system implied by equation (??) estimates of βz are unbiased as the duration of the
pre-sample period becomes large. Thus, effectively we estimate the following model:

PATzit = exp
(
xitβ + ϕzl ln ¯PAT zi0 + ϕz2I

{
¯PAT zi0 = 0

})
+ uzit

The BGVR approach requires the realizations of the dependent variable in the pre-sample period
to be representative of a firm’s behavior over the sample period. Formally, the series must be mean
stationary (conditionally on the time dummies). It is easy to see why this might be violated in
particular for clean patents, whose realizations are concentrated towards the end of our sample
period. Consequently, for many firms we do not observe any clean patenting in the pre-sample
period which could inform us about variations in their fixed propensity to patent in clean.

To address this problem we propose a new estimator in the same spirit of using a control function
as in BGVR. However, rather than using information from the pre-sample period to calibrate the
control function, we simultaneously exploit future data. We estimate the main regression equation
as well as a second equation allowing us to identify the control function from future data. The
key idea is the following. In general a control term ϕ̆zit (·) will lead to consistent estimates, if the

resulting error term ω̌zit = ηzit − ϕ̆zit (·) is orthogonal to xit; i.e. E {ω̌zit |xit} = 0. Note, that given
a parameter vector β we can obtain such an estimate by regressing38

PATziT
µziT

= ηzi +
uziT
µziT

= ϕ̆z (xit) + ω̆zit (17)

with T > t, provided that the variables in xit are pre-determined because then

E

{
uziT
µziT

|xit
}

= 0 (18)

and we can intepret ϕ̆zit (xit) as the expectation of the fixed effects given xit:

37i.e. E {uiτ |xit }= 0 for τ ≥ t.
38For notational simplicity we write the following equation with just one future term. In practice we can improve

efficiency by regressing on an average of future values 1
T−t+1

∑T
τ=t

PATziτ

µ ziτ
.
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ϕ̆z (xit) = E {ηi |xit}
As in the standard case we parametrise ϕ̆z (xit) as an exponential function39 ,

ϕ̆z (xit) = exp (xzitγ)

Notice, that given this control function we can transform our main regression equation as

PATzit

ϕ̆z (xit)
= exp (xitβz) + exp (xitβz)

ω̆zit

ϕ̆z (xit)
+

uzit

ϕ̆z (xit)
(19)

where we replaced ηi by ϕ̆zit (xit) + ω̆zit and divided by ϕ̆zit (xit). Because the xit are are pre-
determined, given the definition of ω̆zit and recalling the definition µzit = exp (xitβz) we have
that

E

{(
µzit

ω̆zit

ϕ̆z (xit)
+

uzit

ϕ̆z (xit)

)
|xit

}
= 0 (20)

Hence, we have two equations that depend on each other as well as two sets of moment conditions.
We can consequently estimate equations (??) and (??) as a system of two simultaneous equations
using the sample analog of the following moments

E

{(
PATzit

ϕ̆z(xit)
− µzit

PATziT

µziT
− ϕ̆z (xit)

)
|xit

}
= 0

We refer to this approach below as the control function fixed effects estimator (CFX).
In addition to these three dynamic count data approaches we also explore the common practice

of implementing equation (??) as a linear panel data estimator by taking logs of the dependent
variable after simply adding the value of unity (an arbitrary constant); i.e. the regression equation
becomes:

ln (1 + PATzit) = xitβz + αzi + εzit

Although this model has undesirable features like generating negative predicted values of patenting
it is attractive because it is straightforward to estimate a relative clean vs. dirty regression; i.e.

ln (1 + PATCLEANit)− ln (1 + PATDIRTY it) = xit (βCLEAN − βDIRTY ) (21)

+ (αCLEANi − αDIRTY i) + (εCLEANit − εDIRTY it)
(22)

39In theory we can even allow a more flexible specification where the conditional expectation varies over time;
i.e. ϕ̆zt (xit) = Et {ηi |xit }. This could reflect firms learning more about their fixed effect over time for instance.
In practice this increases the number of parameters to be estimated greatly and becomes computationally very
burdensome. In our baseline results we therefore fix ϕ̆z (·) over time.
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We show in the results section that the results are qualitatively similar no matter which precise
estimation technique we use.

B Data Appendix

B.1 Identifying unique patent holders

Our patent data is drawn from the World Patent Statistical Database (PATSTAT) maintained by
the European Patent Office. We use the September 2009 version of PATSTAT. The PATSTAT
database reports the name of patent applicants, but a common problem with patent data is that
the name of patentees often varies, because of spelling mistakes, typographical errors and name
variants. To identify unique patent holders we use the ECOOM-EUROSTAT-EPO PATSTAT
Person Augmented Table (EEE-PPAT) database, available at http://www.ecoom.be/nl/eee-ppat,
which provides a dictionary of harmonized patent applicants’ names produced through a computer
algorithm followed by visual inspection. We then manually check the name match, which allows us
to put together companies that a typical computer algorithm would consider distinct. For example
we match Ford Motor Company with Ford Werke, its German subsidiary. As a result, we are able
to reduce the number of distinct patent holders from 20,916 to 3,423, 2,427 of which are companies
and 996 are individuals.

B.2 Firm-level weights

B.2.1 Weights based on patent portfolios

As explained above in the main text, the firm-specific fuel price is computed as the weighted geomet-
ric mean of the fuel prices across countries with weights reflecting the shares of the corresponding
countries in the firm’s patent portfolio. Our price variable is thus defined as:

lnFP it =
∑
c

wFP
ic lnFP ct (23)

where FP ct is the tax-inclusive fuel price in country c at time t and wP
ic is the firm-specific

weight for country c. In order to make sure that the computed exposures are an exogenous source
of variation across firms, the weights are calculated using the patent portfolio of each company over
the 1965-1985 “pre-sample” period (with the regressions performed on the 1986-2005 period).

To make matters concrete consider the example of Hitachi, a large Japanese car parts manufac-
turer, who filed 90,381 patents between 1965 and 1985. 63,175 of these filings were in Japan, 8,315
in the US and 3,498 in Germany. The rest were in a large number of other patent offices. Note that
there are a larger number of filings than there are patents, as one invention can be filed in multiple
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patent offices. For example, Hitachi’s patent 11464997 (this is the DOCDB family number) was
developed by a Japanese inventor and filed in 1980 both in Japan and in the US. This patent enters
twice in the patent-portfolio weight: once for Japan and once for US, since it indicates that both the
US and Japan matter for Hitachi. Hitachi’s 90,381 patents filed between 1965 and 1985 correspond
to only 70,526 distinct inventions, some of which were patented in several countries even though
almost all of Hitachi’s R&D activities are conducted in Japan (we use inventor location below for
spillovers). In order to reflect the greater importance of larger countries when constructing fuel
price weights, we take each country’s average GDP over 1965-1985 into account. The firm-specific
weight for country c is thus equal to:

wP
ic =

sPicgdpc∑
c s

P
icgdpc

(24)

where sPic is the share of country c in Hitachi’s patent portfolio between 1965 and 1985 and gdpc is
the share of country c in the world’s GDP over 1965-1985. The weights used for Hitachi are 68.8%
for Japan, 23.9% for US and 2.7% for Germany. The weights summed across all other countries
was 4.6% so the total weights sum to 100

We use the patent-portfolio weights to construct the price, tax, and emission regulations vari-
ables:

lnPit =
∑
c

wP
ic lnPct (25)

where Pct is the tax-inclusive fuel price per liter in country c at time t. We use exactly the same
weights to calculate the the fuel tax per liter and level of automobile pollution regulation in country
c at time t. Note that in constructing the weights we use all patent filings from applicant firms who
have filed at least one auto-related patent. These are all applicants who have filed a dirt or clean
patent as defined by Table 1 from the OECD or in an IPC class defined as autos according to the
OECD’s cross walk. We could have also included patent filings by applicants who were part of the
auto-related firms who had never filed for a clean or dirty auto patent according to our definitions.
This would have increased our sample of patent filings from 4.5m to about 16m. We chose not to
do this as many of these patents are only distantly related to autos and so would not be relevant
for tracking the demand for cars. Going in the other direction, we could narrow our definition to
include only patents in IPC classes we deem as clean or dirty and exclude all other patents by the
same applicants. Building weights from this narrower pool led to similar results to those presented
here.

B.2.2 Weights based on location of inventors

To construct the firm-specific spillover pools in clean and dirty knowledge we use an analogous
empirical strategy to that for the fuel price. The firm-specific spillover pool is computed as the
weighted geometric mean of the knowledge pools across countries with weights reflecting the shares
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of the corresponding countries in the firm’s pool of inventors. The spillover pool for firm i is
calculated as:

SPILLzit =
∑
c

wS
icSPILLzict (26)

where z ∈ {DIRTY,CLEAN} and SPILLz,ct is the spillover pool in country c at time t, which can
be firm specific (more on that below). The spillover weight wS

ic is the share of all firm i’s inventors
(i.e. where the lead patent holder lived and worked) in country c between 1965 and 1985.

This weight differs from the patent-portfolio weight wP
ic described above in two ways. First,

instead of using information on where each patent was filed (for example, the US patent office) we
use the location of the patent inventors (who are more likely to benefit from other research conducted
locally). Inventor countries are counted fractionally, so if a patent is filed by two inventors, one from
Germany and one from the US, each country will receive one half.40 Note that we use information
on the country of residence of the inventor, not on his nationality. This seems natural because
the geographical location of the inventor is likely to be the critical issue for knowledge spillovers.
The second difference with respect to patent-portfolio weight wP

ic is that each invention is only
counted once, no matter in how many patent offices it has been patented. This is to avoid double
counting. Returning to Hitachi’s patent 11464997 filed in 1980 both in Japan and in the US, this
patent enters twice in the patent-portfolio weight but only once in the inventor location weight,
as a Japan-developed invention. So although wP

Hitachi,Japan = 0.688 as above, wS
Hitachi,Japan = 0.99.

This indicates that although almost all Hitachi’s R&D is based in Japan it sells car parts to a much
wider geographical market.

The spillover pool in country c at time t of firm i, SPILLzict is defined as:

SPILLz,ct =
∑
j ̸=i

wS
jcKz,jt (27)

i.e. the spillover pool of a country for firm i is the sum of all other firms patent stocks that have
inventors in the country (weighted by the number of inventors). The aggregate stocks in (??)
are thus entirely based on firm level stocks. This allows us to make out of sample simulations of
aggregate stocks below using firm level equations only. As an alternative strategy we could simply
construct country level spillover stocks by aggregating over all patents of inventors based in that
country:

SPILLzct =
∑

j∈Inventors based in c

Kz,jt (28)

where Kzict = PATzit+(1−δ)Kzjct−1 and PATzjt are the patents filed that associated with inventor
j in year t. In our baseline specification both methods give very similar results. For consistency
with our simulation results we use the first method (Equation ??) throughout the paper.

40We do this in order to avoid giving an artificially higher weight to a patent with multiple inventors compared to
one with just a single named inventor
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Note that we also use the inventor weights to construct the amount of R&D in energy-efficient
transportation in country c at time t.

B.2.3 Other data

Fuel price and fuel tax come from the International Energy Agency’s Energy Prices and Taxes
database, available online at http://data.iea.org. We use Households End-Use Prices in USD
PPP/unit. Since data are available for both diesel and gasoline fuels, we define fuel price as
the average of diesel and gasoline prices.

Data on public R&D expenditures comes from the IEA’s Energy Technology Research and
Development database, available online at http://data.iea.org. We use Total R&D in Million USD
(2010 prices and exchange rates). We use data on Energy efficiency in transportation (Flow 13).

Data for environmental standards governing maximum permissible levels of tailpipe emissions
for pollutants from new automobiles were sourced from a dataset originally constructed by Perkins
and Neumayer (2012). Countries’ regulatory stringency is coded on a scale of 0 to 5. The basis
of the classification scheme is the European Union’s (EU) Euro emission standards which were
originally implemented across member states in 1992 and have subsequently been tightened in a
series of incremental steps. Countries are coded 0 if they had no national emissions standards in
place for new vehicles, or if standards were less stringent than the equivalent of Euro 1, during the
year in question. Countries where Euro 1 or its equivalent was legally enforceable are coded 1, and
so on, with 5 for countries having implemented the equivalent of the Euro 5 standard.

Data on GDP, GDP per capita and population are taken from the World Bank’s World Devel-
opment Indicators, available at http://data.worldbank.org/. GDP and GDP per capita are PPP
and constant 2005 USD.

Sales data used to compare the patent weights with sales distribution are from the following
sources:

HONDA
http://world.honda.com/investors/library/annual report/2006/ar2006.pdf

TOYOTA
http://www.toyota-global.com/investors/ir library/annual/pdf/2005/pdf/04.pdf
http://www.toyota-global.com/company/profile/figures/vehicle production sales and exports by region.html

VW
http://www.volkswagen.co.uk/assets/common/content/volkswagen-world/annual-report-2003.pdf
http://www.volkswagen.co.uk/assets/common/content/volkswagen-world/annual-report-2004.pdf
http://www.volkswagen.co.uk/assets/common/content/volkswagen-world/annual-report-2005.pdf

FORD
http://corporate.ford.com/doc/2005 AR full.pdf
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http://corporate.ford.com/doc/2004annualReport.pdf
http://corporate.ford.com/doc/2003 annual report.pdf

PEUGEOT
http://www.psa-peugeot-citroen.com/document/publication/annual report 20051151075591.pdf
http://www.psa-peugeot-citroen.com/document/publication/2004 Annual Report1117556773.pdf
http://www.psa-peugeot-citroen.com/document/amf/2003 Annual report1168420831.pdf
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