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1 Introduction

We quantify the impact of weather variation and climate change on the production of rain-fed rice,

a major crop of Thailand both for domestic consumption and export1, as it is for other countries

in Southeast Asia. More generally rice and other staple crops are of great importance to the world

economy. Crop failure and commodity shortages can lead to disaster, even national calamities.

However our story turns out a bit differently. It is a tale of substantial heterogeneity in impact of

weather variation for the given contemporary climate, and for climate shift scenarios.

Indeed this heterogeneity-induced distinction between aggregate and idiosyncratic shocks takes

us to possibility of weather insurance for a given contemporary climate, and of insurance for cli-

mate shifts, and how these might be designed. This does carry us well beyond the scope of the

current paper. Nevertheless, we take up the implications of what we have learned in a concluding

epilogue section.

We take advantage in this paper of quite detailed agricultural data, gathered in the field in the

Northeast of Thailand, in a semi-arid tropics zone, as part of Townsend Thai monthly survey, a

panel from 1999-2009 covering 11 crop cycles. The data utilized here covers 268 households and

2,887 crop plots in two provinces, Sisaket and Burirum. The data itself includes the details of

inputs including fertilizer, labor, land planted; harvests and hence yields; crop operations by name

hence allowing multi stage of crop production; a suite of environmental data including initial plot

soil measurements, monthly rainfall within village and temperature at nearby met station; eco-

nomic variables such as consumption and borrowing/gifts; and demographic variables including

household composition and kinship networks in the village (from a village census).

We proceed from aggregates, from the top down, so to speak, as we move into more and more

micro heterogeneity. See figure 6, for histograms of actual yields versus various of the models,

from reduced form to structural. All of these though are based in some degree on our baseline

multi stage crop production model, at least in the organization of the data. First, we run "standard"

regressions of observed sample rice yields onto monthly rain, rain squared and temperature, and

interaction of rain and temperature. Here the data we have allows us to identify by crop plot the

stage of operation, so, within a given year we have rain and temperature correctly assigned to the

stage of production for each plot. We do this for each province one at time, to allow some local

variation. Largely though, we use one province, Sisaket, to estimate and predict out of sample, to

1Thailand is the world’s largest rice exporter, and rice is one of Thailand’s top ten exports. Thailand’s share of

world’s rice export averaged 30 percent for 1980-2006 (FAOSTAT, http://faostat.fao.org, exports measured in tons).
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Burirum, as in figure 7 using the data we have there, so we can quantify how well we would do if

we extrapolate our results to rice growing regions in the larger Thai Kingdom.

Next we include information on tambon average soil and crop inputs through the lens of our

multistage crop production model, which we describe below, but fixing household variables at

common (average) values. As the figures reveal, the histogram of predicted yields is less peaked

and picks up more of the actual variation, that are in the tails. Third we maintain tambon average

in inputs but allow the measured soil variation of the sample. Finally, we use both soil and input

variation and the full force of our actual model. The point of this exercise is to document that

measured heterogeneity is substantial part of variation in yields, both in the exogenous soil part and

in the endogenous input part. A companion table 4 shows that yields vary significantly by cation

exchange capacity, organic matter, area cultivated, and usage of inputs in different production

stages.

The baseline model we construct and estimate is a multistage crop production model in which

farmers are imagined to maximize expected profits, as if they were risk neutral (see the discussion

in the concluding section). Yields in the final stage are a function of rainfall at the end of that stage

and inputs during that stage. The initial condition for the final stage is the condition of crop plot

at that point in time. In turn that plot condition is a function of what happened in the previous

stage, both inputs and shocks. We use a combination of a biophysical crop production model and

previous labor effort to measure as best we can the condition of the plants, i.e. due to human and

physical interaction. Households are forward looking and take expectations of rainfall and prices

into the future based on current information. This we summarize from regression analysis using

historical data. Finally, the timing of planting is incorporated through its effect on the timing of

stages and therefore on the rainfall realization for a given plot.

Our baseline model displays some key, reassuring features. There is limited substitutability

between soil quality and planting activities, underlying the importance of variation in soil quality.

There is more substitutability between planting stage and intermediate growing stage, and zero

substitutability between growing stage and harvesting. Our estimates also indicate that the effect

of weather, and rainfall in particular, is most pronounced during planting stage. Combined, these

results suggest that the intermediate growing stage is the most opportune period for farmers to

impact their yields, which is the stage when chemical fertilizer is used most extensively. We

find that both DSSAT and previous stage labor are significant measures of intermediate outputs.

These results both underline the importance of properly accounting for nonlinear interactions of

weather and soil with crop development, as simulating soil models like DSSAT do, and at the same

time demonstrate that using such simulation models without accounting for human input is not

sufficient.
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We study though the lens of the model as it stands the impact of variation in weather, for the

given contemporary climate. Figure 10 shows simulated histograms of yields for distinct plots

using 99 years of synthetic weather generated for the current climate scenario. One can see het-

erogeneity across plots in both mean yields and in mass in the tails.

On top of this we simulate the impact of weather generated for two alternative climates, the low

and high emissions IPCC SRES climate change scenarios. For this study, we have chosen to use

climate change predictions produced for the 4th Assessment Report of the United Nations Intergov-

ernmental Panel on Climate Change (IPCC), released in 2007 (Cruz, Harasawa, Lal, Wu, Anokhin,

Punsalmaa, Honda, Jafari, Li, and Ninh, 2007). We use an “ensemble-mean”2 output of multiple,

internationally reputable coupled Atmospheric-Oceanic General Circulation Models (AOGCMs)

to produce predicted changes for the Southeast Asia region for the time period 2040-2069, rela-

tive to the 1960-1990 baseline period3. AOGCMs are computationaly intensive numerical models

driven by equations for atmospheric and oceanic processes, which are integrated forward sequen-

tially (e.g., temperature, moisture, surface pressure).

Because of the uncertainty in future anthropogenic global emissions (which may differ dramat-

ically due to economic development, policy decisions or technology changes), as well as to assess

the range of likely possible climate changes and impacts, we simulated two alternative economic

scenarios selected from a set of widely-used scenarios developed for the IPCC Third Assessment

Report: the Special Report on Emissions (SRES), the highest emissions trajectory scenario A1F1

and the lowest emissions trajectory scenario B1 (Nakicenovic, Alcamo, Davis, de Vries, Fenhann,

Gaffin, Gregory, Grubler, Jung, and Kram, 2000)4, both for the 2040-2069 time period. We did

not specifically model El Niño impacts, as our primary focus was on impacts and adaptations to

longer-term “baseline” changes.

According to IPCC ensemble-mean predictions, results predict a net increase in yearly average

temperature of between 1.32◦C (lowest emissions scenario B1) and 2.01 ◦C (highest emissions

scenario A1F1) and an increase in annual precipitation of 2.25 percent (lowest emissions) and 1.00

percent (highest emissions) for the 2040-2069 period, relative to the baseline 1961-1990 period

(Cruz, Harasawa, Lal, Wu, Anokhin, Punsalmaa, Honda, Jafari, Li, and Ninh, 2007).

Assessing the impact of these changes on future agricultural outputs and crop yields is complex,

2“Ensemble-mean” predictions are the mean output from multiple models, run together to avoid potential bias or

flaws inherent in any particular climate change model, providing a superior delineation of the forced climate change

signal from the natural background variability of the system (Giorgi and Mearns, 2002).
3The models are listed on the IPCC website.
4The SRES scenarios, as with all economic scenarios of emissions and their reliability, are a source of some

controversy. For example, the SRES scenarios have been criticized for their use of Market Exchange Rates (MER)

for international comparison, in lieu of theoretically favored PPP exchanges rates, which correct for differences in

purchasing power. However, for this micro-study, we accept these scenarios as given.
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as yields are a result of interactions between temperature, precipitation effects, direct physiological

effects of increased CO2, and effectiveness and availability of adaptations (Parry, Rosenzweig,

Iglesias, Livermore, and Fischer, 2004). Consequently, predictions for Asia are mixed. Some

studies find decreases in rain-fed crops in South and South-East Asia (Rosenzweig, Iglesias, Yang,

Epstein, and Chivian, 2001). Others such as Cruz, Harasawa, Lal, Wu, Anokhin, Punsalmaa,

Honda, Jafari, Li, and Ninh (2007), using the HadCM2 global climate model, indicate that crop

yields could likely increase up to 20 percent in East and South-East Asia, while Parry, Rosenzweig,

Iglesias, Livermore, and Fischer (2004) find both increases and decreases in yields for Thailand

depending on CO2 regimes.

Again in our study, there is variation in climate shift impact across plots both in means and in

entire distribution of yields. Though warming and varied patterns of rainfall make future scenarios

worse than the current climate, there is heterogeneity in the impact of low versus high emissions,

with some plots actually doing better under some circumstances under the latter.

2 Modeling Rice Cultivation

Economic analysis of production traditionally assumes that production process occurs in one stage.

All input choices are made at the start of production. Within the single production stage, all inputs

are utilized simultaneously and timing of input usage does not affect realized output. Inputs are

defined solely on the basis of their physical characteristics.

The single stage approach is ill-suited for analysis of agricultural crop production (Antle, 1983;

Antle and Hatchett, 1986)5. Crop production is defined by the process of a crop’s biological

growth, which consists of distinct, chronologically sequential phases. Crop’s need for and respon-

siveness to a given physical input varies across different growth phases. This makes the timing

characteristic of inputs important in analysis of crop cultivation. Depending on the progress of

crop growth, the farmer may want to adjust his use of inputs. As a result, input decisions are

sequential in nature and are not all made at the start of production. The farmer responds to real-

ized production shocks as captured in the state of the crop-plot, while forecasting future shocks

and actions. The farmer can also use realized production shocks to update his information set and

therefore his expectations of production shocks for upcoming stages. This can introduce a bias in

estimation when production shocks influencing input choices are not seen by the econometrician

and end up in the yield error term.

5See also Just and Pope (2001) and Just and Pope (1978) for rigorous discussion of agricultural production func-

tions.
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With crop cultivation, each sequential stage can be thought of as a separate production sub-

process with its own production function. We map the growth phases of biological development of

the rice plant into economic production stages by matching the timing of production operations to

the timing of plant development. First is the juvenile growth phase, during which germination takes

place. It corresponds in the production process to planting of seeds and growing and transplanting

of seedlings. The second is the intermediate phase, during which panicle initiation and heading

occur. It corresponds to crop maintenance stage, which includes such operations as weeding and

fertilizing. Third is the final phase, during which grains fill and mature. It corresponds to harvest

collection and storage.

Using this mapping, we construct a three-stage rice production function. Within each stage,

several operations can be performed simultaneously. Output from the previous stage is an initial

condition for next stage production subprocess. Input decisions are made at the start of each stage,

after output from the previous stage is observed, before production shocks for the current stage

are realized, and with updated expectations based on history at that point in time. This approach

incorporates the sequential nature of crop production, where production shocks and input decisions

from earlier stages affect crop-plot conditions and therefore input decisions at later stages. We

assume that crop cultivation process is CES across stages and Cobb-Douglas within stages, with

constant returns to scale in both instances.

Let i index the three production stages and let vector xi =
(
xi1 xi2 ... xi,Ni

)′
denote Ni inputs

for stage i . Let yi be the realized output of stage i , with y0 describing initial conditions of pro-

duction such as plot characteristics. Let εi be production shock at the end of stage i . Then output

in stage i is fi (yi−1, xi , εi ) = yi exp (εi ), for i = 1, 2, 3, where fi is stage i - specific stochastic

production process and yi is stage i-specific CES production function6:

fi (yi−1, xi , εi ) = Ai

(
θ i (yi−1 exp (εi−1))

γ i + (1− θ i )

(
Bi

Ni∏
n=1

x
αin

in

)γ i
)1/γ i

exp (εi ) . (1)

The order of events in each stage i is as follows. Input decisions xi are made based on the history of

production shocks and intermediate outputs realized in previous stages, and before stage i shocks

are realized. Next, production takes place and inputs xi are used at the same time as production

shocks for the current stage, εi , are realized. At the end of the stage, output for the current stage,

yi , is observed. Substituting in recursively for intermediate outputs, we obtain a composite pro-

duction function which describes final harvest as a function of initial plot conditions, and inputs

6Values of inputs, outputs and production shocks are plot-specific. Plot indexing is omitted for simplicity of

presentation.
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and realized production shocks from all three stages: f
(
y0, {xi , εi }3i=1

)
= y3 exp (ε3), or

f

(
y0, {xi , εi }

3
i=1

)
= (2)

δ3

[
δ2

(
δ1

[
y
γ 1

0 + (ρ1z1)
γ 1
]γ 2/γ 1 exp

(
γ 2ε1

)
+ (ρ2z2)

γ 2

)γ 3/γ 2

exp
(
γ 3ε2

)
+
(
ρ3z3

)γ 3

]1/γ 3

︸ ︷︷ ︸
y3

exp (ε3) ,

where δi = Aiθ
1/γ i

i , ρi = Ai (1− θ i )
1/γ i , and zi = Bi

Ni∏
n=1

x
αin

in .

At each stage, the farmer chooses inputs to maximize expected profits7. Let p denote the

price of final output and wi =
(
wi1 wi2 ... wi,Ni

)
denote a vector of stage i input prices. Let

the bar denote expectations, so z̄ j = E
[
z j

]
. At each stage i , expectations are taken conditional

on all information available to the farmer at that point, which includes all realized production

shocks, intermediate outputs and factor prices from previous stages and all current stage prices:

Ii =
{{

y j

}i−1

j=0
,
{
ε j

}i−1

j=1
,
{
w j

}i

j=1

}
. Stage 3 information set also includes final output price p.

At the beginning of stage 3, the farmer chooses profit-maximizing levels of stage 3 inputs, x3.

At that point, only stage 3 production shock is not yet realized. Therefore, the farmer’s information

set at the beginning of stage 3, I3 =
{{

y j

}2

j=0
,
{
ε j

}2

j=1
,
{
w j

}3

j=1
, p

}
, includes realization of

stage 2 output and therefore of production shocks that occurred in stages 1 and 2. The farmer

solves8

max
{x3n}

N3
n=1

p A3

(
θ3 (y2 exp (ε2))

γ 3 + (1− θ3)

(
B3

N3∏
n=1

x
α3n

3n

)γ 3
)1/γ 3

︸ ︷︷ ︸
y3

exp (ε̄3)−
N3∑

n=1

w3nx3n,

with expectation of stage 3 production shock, ε̄3, conditional on information set I3. The first order

conditions are

p exp (ε̄3)
∂y3

∂x3n

= w3n ∀n ∈ {1, ..., N3}

and have the standard interpretation that at the optimum level, input’s marginal product is equal to

its real price.

From the first order conditions it follows that α3 jw3k x3k = α3kw3 j x3 j for all j, k ∈ {1, ..., N3}.

7Household production separates from consumption and labor supply decisions when markets are complete. There

is some evidence for this in the Townsend Thai Project monthly data. For details, see Alem and Townsend (2007).

Levels of consumption smoothing by households in these data provide evidence of extensive social networks that

enable consumption smoothing and thus approximate Arrow-Debreu institutions.
8We are approximating exp (ε) with exp (ε̄), where the reasonableness of this approximation increases with the

size of ε’s mean relative to its variance.
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This lets us express all stage 3 inputs in terms of one stage 3 input, say, x31, as x3k =
α3kw31

α31w3k
x31 for

all k ∈ {1, ..., N3}. Solving first for the optimal x31, we can then solve for optimal stage 3 inputs

levels x3k ∀k ∈ {1, ..., N3}:

x3k =

(
θ3

1− θ3

)1/γ 3 α3k y2 exp (ε2)

B3w3kλ3

[
(1− θ3)

1
γ 3−1 (A3 B3λ3 p exp (ε̄3))

γ 3
γ 3−1 − 1

]−1/γ 3

(3)

∀k ∈ {1, ..., N3}, where λ3 =
N3∏

n=1

(
α3n

w3n

)α3n

. Using the approximation ln (x − 1) ≈ ln x , we can

obtain the log-linear approximation

ln x3k ≈ lnα3k + C3 + ln y2 + ε2 −
1

1− γ 3

ln
w3k

p
+ (4)

+
γ 3

1− γ 3

N3∑
n=1,n 6=k

α3n ln
w3k

w3n

+
1

1− γ 3

ε̄3 ∀k ∈ {1, ..., N3} ,

where the common component of the constant term is C3 =
1
γ 3

ln θ3 +
1

1−γ 3
ln A3 (1− θ3) +

γ 3

1−γ 3

(
ln B3 +

N3∑
n=1

α3n lnα3n

)
. Input demand is increasing in previous intermediate output. As-

suming that current inputs and previous intermediate output are complements rather than substi-

tutes, so that γ 3 < 0, input demand is increasing in expected production shock and in relative

prices of other stage 3 inputs, and decreasing in its own real price.

At the beginning of stage 2, the farmer chooses profit-maximizing levels of stage 2 inputs, x2,

given realized stage 1 output and taking into account his anticipated stage 3 inputs demands. At

this point, farmer’s information set is I2 =
{{

y j

}1

j=0
, ε1,

{
w j

}2

j=1

}
. Farmer solves

max
{x2n}

N2
n=1

p̄ ȳ3 exp (ε̄3)−
N2∑

n=1

w2nx2n − E

[
N3∑

n=1

w3nx3n

]
,

where expectations are conditional on information set I2, y3 is given by equation (1) and is a

function of expected stage 3 inputs demands (3). Substituting equation (3) for expected stage 3

input demands {x̄3n}
N3

n=1, we can express stage 3 production costs,
N3∑

n=1

w3nx3n , and deterministic

stage 3 output, y3, in terms of deterministic component of stage 2 output, y2:

E

[
N3∑

n=1

w3nx3n

]
=

(
θ3

1− θ3

)1/γ 3 y2 exp (ε̄2)

B3λ̄3g
1/γ 3

3

and ȳ3 = A3θ
1/γ 3

3 y2 exp (ε̄2)

(
1+

1

g3

)1/γ 3

,
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where g3 = (1− θ3)
1

γ 3−1
(

A3 B3λ̄3 p̄ exp (ε̄3)
) γ 3
γ 3−1 − 1. The first order conditions for x2k, k =

1, ..., N2, are

A3

(
θ3 (1+ g3)

g3

)1/γ 3 ∂y2

∂x2k

exp (ε̄2 + ε̄3) =
w2k

p̄
+

(
θ3

(1− θ3) g3

)1/γ 3 ∂y2

∂x2k

exp (ε̄2)

B3λ̄3 p̄
.

That is, marginal cost of an intermediate stage 2 input, equal to the right hand side of the above

first order condition, consists of two components, concurrent and anticipated future. Concurrent

marginal cost is the input’s real price, w2k/ p̄. Anticipated future marginal cost of an intermediate

stage 2 input is its marginal effect on expected production costs of the future production stage 3.

Levels of stage 2 inputs affect optimal usage of future production stage 3 inputs, and therefore

expected stage 3 production costs, though their effect on the level of intermediate output y2 which

is the initial condition for stage 3 production. At the optimal level of stage 2 input demand, this

composite marginal cost is equal to that input’s marginal product, which is the left hand side of the

above first order condition. Note how both stage 2 input’s marginal product and future marginal

cost depend on expected production shock not only for the current stage, ε̄2, but also for the

subsequent stage 3, ε̄3.

From the first order conditions, α2 jw2k x2k = α2kw2 j x2 j for all j, k ∈ {1, ..., N2}. Again,

we express all stage 2 inputs in terms of one stage 2 input, say, x21, as x2k =
α2kw21

α21w2k
x21 for all

k ∈ {1, ..., N2}. Solving first for the optimal x21, we can then solve for optimal stage 2 input

levels:

x2k =

(
θ2

1− θ2

)1/γ 2 α2k y1 exp (ε1)

B2w2kλ2

[
(1− θ2)

1
γ 2−1 (A2 B2λ2 P3 exp (ε̄2))

γ 2
γ 2−1 − 1

]−1/γ 2

(5)

∀k ∈ {1, ..., N2}, where λ2n =
N2∏

n=1

(
α2n

w2n

)α2n

, P3

(
ε̄3, {w̄3n}

N3

n=1 , p̄

)
= θ

1/γ 3

3 p̄R

γ 3−1

γ 3

3 , and

R3

(
ε̄3, {w̄3n}

N3

n=1 , p̄

)
= (A3 exp (ε̄3))

γ 3
γ 3−1 −

(
(1− θ3)

(
B3λ̄3 p̄

)γ 3
) 1

1−γ 3 .

Component R3 captures the net indirect effect of a change in stage 2 input on stage 3 production

process. This indirect effect comes from the direct positive effect of stage 2 input use on stage 2

output. On one hand, higher stage 2 output, which is used as an input in stage 3, results in higher

stage 3 output, other things being equal. On the other hand, recall from equation (3) that demands

for stage 3 inputs increase in stage 2 output. As a result, stage 3 output increases, but so do stage

3 production costs. From equation (5), the marginal effect of expected stage 3 production shock
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on stage 2 input demands, ∂x2k/∂ε̄3, is positive, while the marginal effect of expected stage 3

real input prices on stage 2 input demands, ∂x2k/∂ (w̄3k/ p̄), is negative. As in stage 3, stage 2

input demand is increasing in previous intermediate outputs, in expected production shocks, and

in relative prices of other stage 2 inputs, and decreasing in its own real price.

Rewrite R3 as

R3

(
ε̄3, {w̄3n}

N3

n=1 , p̄

)
=
(1− θ3)

1
γ 3−1

(
A3 B3λ̄3 p̄ exp (ε̄3)

) γ 3
γ 3−1 − 1

(1− θ3)
1

γ 3−1
(
B3λ̄3 p̄

) γ 3
γ 3−1

. (6)

For γ 3 < 0, it appears that the effect of expected increase in stage 3 output due to higher stage

2 input use is very pronounced, while the effect of higher stage 3 production costs is negligible.

Note that ∂R3/∂γ 3 < 0, so the stronger is complementarity between production stages 2 and 3

(that is, the more negative γ 3 is), the more prevalent is the former effect over the latter. Using

the approximation ln (x − 1) ≈ ln x , we can approximate ln R3 as ln R3 ≈
γ 3

γ 3−1
(ln A3 + ε̄3).

9

Applying the log approximation to equation (5), we can write stage 2 input demands as

ln x2k ≈ lnα2k+C2+ln y1+ε1−
1

1− γ 2

ln
w2k

p̄
+

γ 2

1− γ 2

N2∑
n=1,n 6=k

α2n ln
w2k

w2n

+
1

1− γ 2

(ε̄2 + ε̄3)

(7)

∀k ∈ {1, ..., N2} , where the common component of the constant term is C2 =
1

γ 3(1−γ 2)
ln θ3 +

1
γ 2

ln θ2 +
1

1−γ 2
ln A3 A2 (1− θ2)+

γ 2

1−γ 2

(
ln B2 +

N2∑
n=1

α2n lnα2n

)
.

At the beginning of stage 1, farmer chooses profit-maximizing levels of stage 1 inputs, x1,

given initial state of the plot, y0, and taking into account his anticipated stage 2 and stage 3 in-

puts demands. Farmer’s information set at the beginning of production cycle includes only initial

conditions and stage 1 factor prices: I1 = {y0, w1}. Farmer solves

max
{x1n}

N1
n=1

p̄ ȳ3 exp (ε̄3)−
N1∑

n=1

w1nx1n − E

[
N2∑

n=1

w2nx2n −
N3∑

n=1

w3nx3n

]
,

where expectations are conditional on information set I1, y3 is given by equation (1) and is a

function of expected stage 2 inputs demands (5) and stage 3 inputs demands (3). Substituting

equations (3) and (5), respectively, for expected stage 3 input demands {x̄3n}
N3

n=1 and stage 2 input

demands {x̄2n}
N2

n=1, we can express stage 3 production costs,
N3∑

n=1

w3nx3n , stage 2 production costs,

9This approximation eliminates dependence of stage 2 input demands on expected stage 3 factor prices.
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N2∑
n=1

w2nx2n , and deterministic stage 2 output, y2, in terms of deterministic component of stage 1

output, y1:

E

[
N3∑

n=1

w3nx3n

]
=

(
θ3

1− θ3

)1/γ 3 A2θ
1/γ 2

2 y1 exp (ε̄2 + ε̄1)

B3λ̄3g
1/γ 3

3 g
1/γ 2

2

(g2 + 1)1/γ 2 ,

E

[
N2∑

n=1

w2nx2n

]
=

(
θ2

1− θ2

)1/γ 2 y1 exp (ε̄1)

B2λ̄2g
1/γ 2

2

and ȳ2 = A2θ
1/γ 2

2 y1 exp (ε̄1)

(
1+

1

g2

)1/γ 2

,

where g2 = (1− θ2)
1

γ 2−1
(

A2 B2λ̄2 P̄3 exp (ε̄2)
) γ 2
γ 2−1 − 1. The first order conditions for x1k, k =

1, ..., N1, are

A3

(
θ3 (1+ g3)

g3

)1/γ 3

A2

(
θ2 (1+ g2)

g2

)1/γ 2 ∂y1

∂x1k

exp (ε̄1 + ε̄2 + ε̄3) =

w1k

p̄
+

(
θ2

(1− θ2) g2

)1/γ 2 ∂y1

∂x1n

exp (ε̄1)

B2λ̄2 p̄
+

A2

(
θ2 (1+ g2)

g2

)1/γ 2
(

θ3

(1− θ3) g3

)1/γ 3 ∂y1

∂x1n

exp (ε̄1 + ε̄2)

B3λ̄3 p̄
.

The structure of the first order condition once again reflects the feedback between different pro-

duction stages. For stage 1 inputs, anticipated future marginal cost has two components, one the

effect on stage 2 input demands through stage 1 inputs’ effects on stage 1 output, and another the

effect on stage 3 input demands, through their indirect effect on stage 2 inputs and therefore on

stage 2 output. The sum of this anticipated future marginal cost and concurrent marginal cost, or

real stage 1 factor price, equals the marginal production of stage 1 input. As in stage 2, stage 1

input’s marginal product and future marginal cost depend on expected production shocks in both

current and subsequent production stages.

Once again, we use the first order conditions to express all stage 1 inputs in terms of one stage

1 input, say, x11, as x1k =
α1kw11

α11w1k
x11 for all k ∈ {1, ..., N1}. Solving first for the optimal x11, we

can then solve for optimal stage 1 input levels:

x1k =

(
θ1

1− θ1

)1/γ 1 α1k y0

B1w1kλ1

[
(1− θ1)

1
γ 1−1

(
A1 B1λ̄1 P2 exp (ε̄1)

) γ 1
γ 1−1 − 1

]−1/γ 1

(8)
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∀k ∈ {1, ..., N1}, where λ1 =
N1∏

n=1

(
α1n

w1n

)α1n

, P2

({
ε̄i , {w̄in}

Ni

n=1

}2

i=1
, p̄

)
= θ

1/γ 2

2 p̄R

γ 2−1

γ 2

2 , and

R2

({
ε̄i , {w̄in}

Ni

n=1

}2

i=1
, p̄

)
=(

A2

(
θ3 R

γ 3−1

3

)1/γ 3

exp (ε̄2)

) γ 2
γ 2−1

−
(
(1− θ2)

(
B2λ̄2 p̄

)γ 2
) 1

1−γ 2 .

Component R2 captures the net indirect effect of a change in stage 1 input on production processes

in stages 1 and 2. This indirect effect comes from the direct positive effect of stage 1 input use on

stage 1 output. Consider first this effect on stage 2 production. On one hand, stage 1 output is used

as input in stage 2 production, and so higher stage 1 output results in higher stage 2 output. On

the other hand, recall from equation (5) that demand for stage 2 inputs increases in stage 1 output.

This entails both additional increase in stage 2 output and higher stage 2 production costs. From

equation (8), the marginal effect of expected stage 2 production shock on stage 1 input demands,

∂x1k/∂ε̄2, is positive, while the marginal effect of expected stage 2 real input prices on stage 1

input demands, ∂x1k/∂ (w̄2k/ p̄), is negative.

Consider next the effect of stage 1 inputs on stage 3 production. This effect has an additional

level of indirectness to it, since a whole production stage separates stage 1 inputs from stage 3

production. Stage 1 inputs indirectly affect stage 2 output through their effect on stage 1 output

and stage 2 inputs; subsequently, stage 2 output affects stage 3 output directly as an input into

stage 3 production process and indirectly though its effect on stage 3 input demands. In other

words, the indirect effect of stage 1 inputs on stage 3 output and production costs depends on the

indirect effect of stage 1 inputs on stage 2 output. As a consequence of this double indirectness, the

effects of stage 3 expected production shocks, ε̄3, and real factor prices, w̄3k/ p̄, on stage 1 input

demands, x1k , are less straightforward and depend on the sign of R̄3, with production shocks and

factor prices having the opposing effect. As in stages 2 and 3, stage 1 input demand is increasing

in initial conditions, in expected stage 1 production shocks, and in relative prices of other stage 1

inputs, and decreasing in its own real price.

Rewrite R2 as

R2

({
ε̄i , {w̄in}

Ni

n=1

}2

i=1
, p̄

)
=
(1− θ2)

1
γ 2−1

(
A2 B2λ̄2 p̄

(
θ3 R

γ 3−1

3

)1/γ 3

exp (ε̄2)

) γ 2
γ 2−1

− 1

(1− θ2)
1

γ 2−1
(
B2λ̄2 p̄

) γ 2
γ 2−1

. (9)

For γ 2 < 0, it appears that the effect of expected increase in stage 2 output due to higher stage
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1 input use is very pronounced, while the effect of higher stage 2 production costs is negligible.

Note that ∂R2/∂γ 2 < 0, so the stronger is complementarity between production stages 1 and 2

(that is, the more negative γ 2 is), the more prevalent is the former effect over the latter. Using the

approximation ln (x − 1) ≈ ln x , we can approximate ln R2 as

ln R2 ≈
γ 2

γ 2 − 1

(
ln A2 +

1

γ 3

ln θ3 +
γ 3 − 1

γ 3

ln R3 + ε̄2

)
. Applying the log approximation to equation (8) and using approximations10 of ln R2 and ln R3,

we can write stage 1 input demands as

ln x1k ≈ lnα1k + C1 + ln y0 −
1

1− γ 1

ln
w1k

p̄
+ (10)

+
γ 1

1− γ 1

N1∑
n=1,n 6=k

α1n ln
w1k

w1n

+
1

1− γ 1

(ε̄1 + ε̄2 + ε̄3) ∀k ∈ {1, ..., N1} ,

where the common component of the constant term is C1 =
1

γ 3(1−γ 1)
ln θ3 +

1

γ 2(1−γ 1)
ln θ2 +

1
γ 1

ln θ1 +
1

1−γ 1
ln A3 A2 A1 (1− θ1)+

γ 1

1−γ 1

(
ln B1 +

N1∑
n=1

α1n lnα1n

)
.

Rice cultivation process is described by a system of equations consisting of production function

equations (1) and input demand equations for each of three stages (8), (5), and (3). Final output can

also be expressed as a cumulative production function (2), and input demands can be approximated

by equations (10), (7), and (4).

Because stage 2 and stage 3 input demands depend on realized outputs from previous stages,

they depend on realized production shocks from earlier stages: stage 2 input demands in equation

(5) depend on realized stage 1 production shocks ε1, and stage 3 input demands in equation (3)

depend on realized stage 1 and stage 2 production shocks ε1 and ε2. Final output depends on

realizations of production shocks in all three stages. This is expressed explicitly in the composite

production function equation (2), and implicitly in the stage-specific production function equation

(1) though the dependence of yi on yi−1.

2.1 Comparison of CES and Cobb-Douglas Specifications

For comparison, let’s consider Cobb-Douglas specification of stage production functions, so that

production activities in different stages are substitutes with unit elasticity of substitution, rather

10These approximations of ln R2 and ln R3 eliminate dependence of stage 1 input demands on expected stage 2 and

stage 3 factor prices.
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than potentially complements as allowed for with our CES specification. Let stage production

functions be

fi (yi−1, xi , εi ) = Ai y
βi

i−1

Ni∏
n=1

x
αin

in exp (εi ) .

Constant returns to scale imply that β i +
Ni∑

n=1

αin = 1. Solving farmer’s profit maximization

problem at the beginning of stage 3, we obtain the following stage 3 input demands:

ln x3k = lnα3 j + C3 + ln y2 + ε2 −
1

β3

ln
w3k

p
+

1

β3

N3∑
n=1,n 6=k

α3n ln
w3k

w3n

+
1

β3

ε̄3

∀k ∈ {1, ..., N3}, where C3 =
1
β3

(
ln A3 +

N3∑
n=1

α3n lnα3n

)
. Comparing this equation with log

approximation of stage 3 input demands under CES specification in equation (4), there are two

differences. First, relative prices of other stage 3 inputs have positive effect on input demand under

Cobb-Douglas and negative effect under CES when γ 3 < 0, that is, when stage 2 intermediate

output and stage 3 production activities are complements. The second difference is the magnitude

of the coefficient on expected stage 3 production shock, ε̄3. The coefficient is positive in both

cases; however, it is greater than one under Cobb-Douglas and less than one under CES - again,

assuming γ 3 < 0. If γ 3 > 0, so that intermediate stage 2 output and stage 3 production activities

are substitutes, these qualitative differences with Cobb-Douglas specification go away. The same

qualitative results hold for input demands in stages 1 and 2.

3 Error Structure

We have three levels of data variation: individual across households, spatial across villages and

plots, and temporal across stages and years. Let h index households, k index plots, v index vil-

lages, i index stages, and t index years. For each province, we have data on four villages over 11

years, with around 33 households per village, and around 2 plots cultivated on average by a given

household per year. For each plot k in year t , we have three sets of production shocks and error

terms, corresponding to three production stages.

Because we have two temporal dimensions, production shocks can potentially be autocorre-

lated across years (over t) and across stages (over i). Similarly, there are three levels of potential

group error correlation, within a physical plot, within a household, and within a village. Let εkhvi t

denote the overall production shock for plot k belonging to household h in village v during pro-
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duction stage i in year t , and let ξ khvi t denote the total unobserved by econometrician error term,

similarly defined. We now decompose the overall production shock and error term into observed

and unobserved components.

Rainfall Shock

One of the main production shocks for rice cultivation is rainfall. At a given point in time, rainfall is

an aggregate shock at village level and is arguably spatially correlated across villages. In our data,

the four sample villages in the same province are located very close to each other, as illustrated

in figures 1 and 2 for Sisaket province and figures 3 and 4 for Burirum province. Correlations

of monthly rainfall between villages11 in our data range from 0.95 to 0.98. In addition, plots

belonging to sample households from different villages are often adjacent to one another, and

overall plots from all four villages in the same province are spatially intermingled. This enables

us to assume perfect spatial correlation of monthly rainfall across all sample plots in the same

province as a good approximation. Although monthly rainfall is an aggregate shock, there is

substantial variation among farmers in timing of production activities in a given year. This results

in noticeable variation in rainfall between plots in a given stage, making stage rainfall plot-specific

rather than aggregate. Let ρkhvi t denote rainfall shock realized on plot k belonging to household h

in village v in stage i in year t .

In terms of serial correlation, generally rainfall does not persist from year to year (Paxson,

1992). Rainfall is more likely to be serially correlated across stages. That is, covariance of ρkhvi t

and ρkhvi ′t is generally different from zero for stages i, i ′ ∈ {1, 2, 3}, while covariance of ρkhvi t

and ρkhvi t ′ is zero for all years t 6= t ′.

Farmers are able to predict, with varying success, the upcoming rainfall for future stages. Let

ρ̄khvi t denote farmer’s rainfall expectation. The difference between realized and expected rainfall,

ρkhvi t − ρ̄khvi t , is the unanticipated rainfall shock. Let ρ̃khvi t denote this difference. By construc-

tion, ρ̃khvi t has zero mean and is uncorrelated with farmer’s rainfall expectation, ρ̄khvi t .

At any given point in time, the effect of rain on plant development would vary depending on

plot’s soil, elevation and slope. We have a reasonable measure of soil quality, but not of elevation

and slope. If elevation and slope vary substantially across plots, this would be a permanent plot-

specific effect. Let ukhv denote this unmeasured effect and rkhvi t denote our measure of plot- and

stage-specific rainfall. Rainfall shock can be written as a sum of stage- and plot-specific observed

shock and fixed plot-specific unobserved effect, ρkhvi t = rkhvi t + ukhv. As farmers know the

characteristics of their plots, including plot’s slope and elevation, ukhv is incorporated into farmer’s

11Our data contain daily village-level rainfall starting from 1998. More detailed description of our data is given in

section 4.
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Figure 1: Location of Plots in Four Sample Villages in Sisaket Province
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Figure 2: Zoom in on Plot Locations in Four Sample Villages in Sisaket Province
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Figure 3: Location of Plots in Four Sample Villages in Burirum Province
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Figure 4: Zoom in on Plot Locations in Four Sample Villages in Burirum Province
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rainfall expectation, ρ̄khvi t . We, on the other hand, do not observe plot’s slope and elevation, and

as a result our measure of farmer’s rainfall expectation, r̄khvi t , does not incorporate ukhv. That is,

while for a farmer realized rainfall shock can be decomposed as ρkhvi t = ρ̄khvi t + ρ̃khvi t , we can

decompose it only as ρkhvi t = r̄khvi t + ρ̃khvi t + ukhv, where ρ̃khvi t is unanticipated by farmer and

observed by us rainfall shock12 and ukhv is unobserved by us plot-specific fixed effect. Similarly,

our measure of farmer’s rainfall expectation is accurate only up to ukhv: ρ̄khvi t = r̄khvi t + ukhv.

Other Production Shocks and Measurement Errors

At the household level, a number of demographic and economic shocks, such as family member

sickness, death, pregnancies, employment lay offs or promotions, are hard to anticipate. Assuming

some market frictions, these shocks are difficult to fully smooth right away. Consequently, they

potentially can affect production decisions through their impact on household’s credit constraint

and availability of household labor. These household-level shocks are unlikely to be correlated

across years13, but are likely to persist from stage to stage in a given year. Let ηhvi t denote these

household- and stage-specific shocks, then E
[
ηhvi t , ηhvi ′t

]
6= 0 for stages i, i ′ ∈ {1, 2, 3} and

E
[
ηhvi t , ηhvi t ′

]
= 0 for any years t 6= t ′. Consequently, E

[
ηhvi t |I1

]
= 0 and E

[
ηhvi ′t |Ii

]
6= 0

for i = 2, 3 and i ′ > i .

Two sources of measurement errors specific to our data should be mentioned. The first is

related to the interaction of fertilizer application and soil quality. We have measured data on soil

variables for a subset of plots, and these measurements were taken in the base year, 1998, and

were not repeated. We have location coordinates for all plots in the sample; using these, plots

with no soil data were assigned values of soil variables from geographically closest plots with

soil data. If fertilizer application is measured accurately but soil quality is not, it will be hard to

disentangle positive effect of fertilizer application on crop development for a given soil quality

from the fact that poor soils require higher fertilizer use. In the latter case, higher fertilizer use

would be an indicator of low soil quality, which has negative effect on crop development. Estimated

effect of fertilizer application on yields will be the net of positive direct effect of fertilizer use

and negative effect of low soil quality. When soil quality is higher (lower) than reflected by soil

variables, the direct effect of fertilizer will be overestimated (underestimated). This is a fixed plot-

level measurement error and can be included together with unobserved slope and elevation into a

permanent plot-specific effect ukhv.

12ρ̃ phvi t = ρ phvi t − ρ̄ phvi t = rphvi t + u phv − r̄phvi t − u phv = rphvi t − r̄phvi t , and therefore we have an accurate

measure of ρ̃ phvi t . This result comes from assumption that actual rainfall effect, ρ phvi t , is additive in our measure of

rainfall, rphvi t , and the unobserved plot fixed effect, u phv .
13There are potential exceptions to this, such as cases of permanent disability.
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The second source of measurement error is the structure of the questionnaires, which ask about

activities performed since the last interview, not about dates on which they were performed. Be-

cause interviews are conducted monthly, all our variables measuring timing of production activities

are accurate up to a month. As a result, the difference between the timing of production activity,

in particular of planting, and of the timing of rainfall realization, can be measured only at month

level. For example, if two plots were planted in May, one in the first week of May, another in the

last week of May, and adequate rain started only in the middle of May, then second plot’s timing is

superior to that of the first plot, but we don’t capture this in our data. This difference between the

two plots ends up in the measurement error term and is specific to plot and stage. Let it be denoted

by ϕkhvi t . As all plots are subject to this measurement error and it is random in nature, we can

think that there is no systematic bias in this error term component.

Composite Production Shocks and Error Terms

Composite production shock realized on plot k during stage i is the combination of rainfall and

household shocks, εkhvi t = ρkhvi t + ηhvi t . Farmer’s expectation of this shock is ε̄khvi t = ρ̄khvi t +

η̄hvi t . Both the realized shock and farmer’s expectation of it are serially correlated across stages

and within household and are serially uncorrelated across years.

We observe a subset of the production shock, rkhvi t = ρkhvi t − ukhv, and, as a result, plot-

specific fixed effect ukhv is part of the composite error term. Similarly, we have an imperfect

measure of farmer’s prediction of rainfall, r̄khvi t = ρ̄khvi t − ukhv. Combining together all mea-

surement errors and shocks that are unobserved by us, we can write the composite error term as

ξ khvi t = ukhv + ηhvi t + ϕkhvi t . This composite error term is heteroskedastic, serially correlated

across stages and years, autocorrelated within a plot, and within a household for a given year. One

way to partially account for this error structure in estimation is to use cluster error terms at house-

hold level. We have 141 distinct households in the Sisaket province sample, with an average of 2

observations per household per year, since many households cultivate more than one plot in a given

year. The number of households in our sample is large enough, and the number of observations

per household is small relative to the number of households, to make clustering at household level

a viable option in practice. Existing variation in number of crop-plots14 per household indicates

that ignoring clustering of error terms will have a large effect on estimated standard errors, mak-

ing inference unreliable. This approach will not fully take care of the unobserved plot-specific

fixed effects ukhv or of potential bias in cases where household-specific shocks ηhvi t are correlated

across production stages in a given year.

14We refer as "crop-plot" to plot- and year-specific observations, or crops cultivated on a given physical plot in a

given year.
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4 Data

Our data come from the Townsend Thai Project15 (Binford, Lee, and Townsend, 2004). We focus

on rice farmers in two provinces, Sisaket and Burirum, located in predominantly rural and poor

northeastern region of the country. Figure 5 shows location of our sample provinces in Thailand.

Figure 5: Location of Sample Provinces in Thailand

The northeastern region accounts for 57 percent of the total area under rice cultivation in Thailand

and 46 percent of the total rice production (Naklang, 2005). In each province, a tambon16 with

four sample villages was selected at random. Data are collected monthly at a household-plot level,

with many households cultivating several plots in a given year. We use an unbalanced eleven-

year panel for 1999-2009. It includes 141 households in Sisaket province, with a total of 1,888

crop-plot observations over 11 years, and 127 households in Burirum province, with a total of 999

crop-plot observations. Table 1 shows village-level averages of number of years and plots per year

in the data. The first column shows number of households per village, second column shows mean

15Detailed description of the project can be found at Thailand Database Research Archive, http://cier.uchicago.edu/.
16Thai equivalent of a U.S county.
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number of years per household, third column shows mean number of plots cultivated per year per

household, and fourth column shows total number of observations. On average, we have data for

seven years per household, with two crop-plots per cycle.

Table 1: Number of Observations per Household, Village, and Province

Average number of

Hhds, total years per hhd plots per hhd per year Obs., total

Burirum province

Village 2 24 7.2 1.3 135

Village 10 37 7.2 1.9 316

Village 13 30 6.2 1.9 227

Village 14 36 7.8 2.0 321

Province total 127 7.2 1.8 999

Sisaket province

Village 1 38 9.0 2.6 598

Village 6 43 8.7 2.0 534

Village 9 38 8.3 2.3 434

Village 10 22 9.2 2.3 322

Province total 141 8.8 2.3 1888

The data include information on usage and cost of labor and non-labor inputs used in sepa-

rate production operations. We also have sets of measures of plot soil quality, some household

socio-economic characteristics, and environmental data such as daily rainfall and temperature and

chemical composition of water sources.

During each monthly interview, households are asked in detail about all their rice cultivation

activities. For each plot on which they grow rice, households report which operations were per-

formed on the plot since the last interview, which inputs were used and in which quantities.

The fact that data were gathered monthly for each plot enables us to avoid imposing uniform

bounds on stage timing and duration. Rather, we allow for plot-specific timing and duration of

stages. That is, not all farmers are doing the same thing at the same time. The fact that timing and

duration of stages and of the overall production cycle vary across households and plots has several

important implications. Stage timing reflects variation in a number of plot-specific phenomena

that determine it, such as plot characteristics, current state of the crop, effects of the unobserved

production shocks, expectations of future production shocks, and the farmer’s approach to rice

cultivation. By incorporating variation in stage timing we take advantage of this additional infor-

mation contained in the data. Moreover, aggregate production shocks such as rainfall have different

effects on different plots because they may hit these plots during different production stages. Thus
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using plot-specific stage timing enables us to estimate the effects of changes in rainfall on rice

cultivation with increased accuracy. When computing amounts of inputs used in each cultivation

operation in each stage, we aggregate input usage over plot- and cycle-specific stage periods. We

do not endogenize the planting decision, however, nor the length and timing of stages for each

farmer.

To map growth phases of rice plant into production stages, we look at the timing of cultivation

operations required at different stages of plant growth. At different stages of growth the rice plant

requires different types of care and so calls for performance of different operations. Operations

involved in rice production can be divided into three groups. The first group involves preparatory

operations necessary for initiation of plant growth. These include soil preparation, plowing, and

planting. The final group involves terminal operations that take place at the end of production cycle,

when plant growth nears conclusion. These include harvesting and preparation of harvest for sale

and/or storage. The timing of both preparatory and terminal operations in production cycle is fairly

intuitive: preparatory operations are performed at the beginning of production cycle in stage 1, and

terminal operations are performed at the end of production cycle in stage 3. The intermediate group

involves operations aimed at plant care during plant development, such as fertilizing and weeding.

The timing of these intermediate operations is less intuitive.

For each plot, we determine the timing of stages 1 and 3 by looking at the timing of operations

that intuitively correspond to each of these stages. That is, the timing of stage 1 is determined

by farmer’s timing of preparatory operations, and the timing of stage 3 is determined by farmer’s

timing of terminal operations. Time period between stages 1 and 3 constitutes stage 2.

Table 2 shows variation in stage duration and timing across years. As noted earlier, we de-

termine the timing of stages individually for each plot in each cycle. First three columns of table

2 show the province mode for the starting month of each stage, and last three columns show the

province mode of duration of each stage in calendar months. It is clear from table 2 that while

stage durations are fairly constant over years, there is pronounced variation in stage timing across

years. Little variation in stage duration implies that there is effectively one timing decision in a

given year, namely, the choice of starting month for stage 1.

Our weather data consist of village-level daily rainfall data from 1998, and province-level daily

rainfall, temperature and solar radiation data from 1972. Temperature data include daily mean,

minimum and maximum temperature measures.

Rainfall shocks are of high significance for rice cultivation. Rice is a very water-demanding

plant. Most rice cultivation in Thailand is rainfed and makes little use of irrigation. According to

the report by the International Rice Research Institute, rainfed rice is grown on approximately 92

percent of the area under rice cultivation in northeastern Thailand (Naklang, 2005). Farmers have
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Table 2: Timing and Duration of Stages

Starting month, mode Length (months), mode

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Burirum province

2000 7 8 9 1 1.9 2.6

2001 7 8 9 1 2 2.5

2002 6 7 10 1 2.2 2.3

2003 6 7 10 1 2.5 2

2004 6 7 9 1 2.2 2.5

2005 6 7 9 1.1 3 2.4

2006 6 7 9 1 1.9 3.2

2007 6 7 9 1 2.8 2.5

2008 6 7 9 1 2 2.5

2009 5 6 9 1 3.3 2.6

Sisaket province

1999 6 7 9 1.1 1.8 2.9

2000 7 8 9 1 1.5 2.3

2001 7 8 10 1.1 1.7 2.1

2002 8 9 10 1.1 1.6 2

2003 8 9 10 1 1.6 2.1

2004 7 8 9 1.1 1.7 2.1

2005 8 9 10 1 1.6 1.6

2006 6 7 9 1 2.1 2.8

2007 6 7 10 1 2.1 2.7

2008 7 8 10 1 1.7 2.5

2009 7 8 9 1 1.5 2.8
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to take the possibility of adverse rainfall shocks into account when making input decisions. The

effect of rain on crop also depends on temperature, as higher temperature can cause faster evapo-

transpiration and therefore lower soil moisture, the key latent variable. Both the direct effect of rain

on crop and its integration with temperature are nonlinear. We use monthly total of village-level

daily rainfall and monthly mean of province-level maximum daily temperature to construct a mea-

sure of rainfall shock as a linear combination of rain, square of rain, temperature, and interaction

of rain and temperature. We use historic rainfall and temperature data to construct a measure of

expected future rainfall and temperature at the beginning of each production stage as a function of

monthly indicators. Although rainfall is an aggregate shock, realized and expected rainfall varies

across plots due to variation in stage timing.

Land variables describe the area used for rice cultivation as well as inherent characteristics of

land that affect rice cultivation, such as quality of soil. In any given cycle households typically

use several land plots. Land plots belonging to the same household need not be adjacent or even

located close to each other. Typically, smaller plots are located close to the house and larger plots

are spread around the village. The four villages in each province are located near each other, and

distributions of plots for villages overlap, as was illustrated in figures 1 and 2 for Sisaket province

and figures 3 and 4 for Burirum province. As a result, plots belonging to households from the same

village may actually be further apart than plots belonging to households from different villages.

Similarly, plots belonging to the same household may actually be further apart than plots belonging

to different households. Thus, whether plots belong to the same village or even the same household

is not a good indicator of similarities in soil quality. Rather, soil quality is better captured by the

location of plots relative to one another.

Variables that describe soil quality include measures of chemical composition of soil and its

density. They indicate soil’s ability to provide nutrients to plants and to retain water and nutrients

after rains and fertilizing. Soil variables describe initial conditions of rice production, correspond-

ing to y0 in terms of section 2 notation. We use two soil variables, cation exchange capacity (CEC)

and organic matter. CEC measures soil’s capacity to hold cation nutrients. It is determined by

the amounts of clay and humus in the soil, which improve its nutrient and water-holding capacity.

Organic matter helps the soil hold water and supplies nutrients.17 In terms of section 2 notation,

initial condition y0 is a linear combinations of two soil quality measures and area under cultivation.

To construct a measure of intermediate "outputs", we use DSSAT - a powerful computer crop

growth model.18 The DSSAT system takes in amounts and timing of application of non-labor pro-

17CEC is measured in meq/100g, or milliequivalents of hydrogen per 100 grams of dry soil. Organic matter content

is measured in percent.
18DSSAT, or Decisions Support System for Agrotechnology Transfer, has been maintained and supported by the
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duction factors such as seeds and chemical fertilizer, as well as detailed data on inherent soil quality

and climatic conditions. The latter include actual historical data on daily variation in precipitation,

maximum and minimum temperature, and solar radiation. DSSAT then employs physical and

biophysical models of soil-plant-atmosphere interactions to simulate, day by day, the biological

growth of the plant by computing crop-specific growth responses, measured precisely in labora-

tory conditions, to physical inputs and changes in soil, water, carbon, and nitrogen. DSSAT tracks

plant’s growth with 30 dynamic indicators, such as number of leaves per stem, root density, and

stem weight.

The big advantage of DSSAT is the great level of detail and accuracy in modeling nonlinear

crop response due to purely climatic and soil conditions. Note, however, that DSSAT does not

take into account labor inputs nor idiosyncratic shocks. In other words, DSSAT simulates plant

growth due to exogenous climatic and soil conditions, but does not consider all factors and shocks

under which rice cultivation occurs in the field. DSSAT simulations are thus not exact measures

of the actual crop state. Rather, they are approximations of the crop state that should occur under

observed soil parameters, climatic conditions and non-labor crop inputs, as a result of quantified

crop-specific growth responses measured precisely in laboratory conditions. However, despite the

high precision and accuracy of DSSAT crop-growth simulations, the software typically is not able

to model certain particular and idiosyncratic environmental stresses that reduce crop growth from

the optimal predicted amounts.

The advantage of our economic model of rice production over DSSAT is that economic model

takes into account farmers’ decisions on timing and labor inputs. Again, the advantage of DSSAT

over our economic model is that DSSAT has information on the way plant develops biologically

and therefore can trace the state of the crop throughout the whole production cycle, something we

do not observe in the survey data. This allows us to use DSSAT simulations as imperfect estimates

of intermediate outputs. We use measures of leaf weight and number of tillers as indicators of

intermediate output from stage one, and measure of the progress of grain filling as indicator of

intermediate output from stage two. Because DSSAT does not incorporate labor input, we use

DSSAT indicators of intermediate output together with measures of labor inputs in previous stages

to provide a more accurate proxy for intermediate output. In terms of section 2 notation, interme-

diate output y1 exp (ε1) is a linear combinations of two DSSAT measures of intermediate output

from stage 1 and labor used in stage 1, and intermediate output y2 exp (ε2) is a linear combinations

of one DSSAT measure of intermediate output from stage 2 and labor used in stage 2.

Apart from labor, other production inputs are seeds and seedlings for planting and chemical

fertilizer. Table 3 provides summary statistics for yields, production inputs, cultivated area, and

International Consortium for Agricultural Systems Applications (ICASA).
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soil quality measures for each province. There are three inputs in stage 1: seeds, seedlings, and

labor. Chemical fertilizer and labor are the two inputs in stage 2. Stage 3 uses only labor input. In

total, there are six input demand equations corresponding to crop cultivation in our data.

Table 3: Summary Statistics on Yields, Soil, and Production Inputs

Burirum province Sisaket province

Mean St. Dev. Mean St. Dev.

Yield (kh/ha) 1,983.75 887.60 1,777.02 803.56

Area (ha) 1.30 0.88 1.12 0.92

CEC (meq/100g) 2.54 1.50 2.32 1.20

Organic matter (%) 0.43 0.25 0.52 0.36

Stage 1 chemical fert. (kg/ha) 40.41 116.82 11.31 41.91

Stage 2 chemical fert. (kg/ha) 113.19 103.72 147.18 142.55

Seeds (kg/ha) 96.48 77.94 35.28 66.05

Seedlings (sets/ha)a 281.58 559.19 788.62 703.41

Stage 1 labor (hrs/ha) 74.21 94.86 141.36 139.83

Stage 2 labor (hrs/ha) 23.53 61.21 34.78 68.96

Stage 3 labor (hrs/ha) 232.87 178.83 220.59 157.53

aOne set contains about 100 seedlings.

***, **, and * denote, respectively, significance at 1%, 5%, and 10% level.

5 Production Function Estimation

To account for endogeneity of input decisions, we estimate the composite production function and

input decision rules as a system of simultaneous equations. The system approach to estimation

delivers estimates of the parameters of the composite production function as well as decision rules

for all production inputs. We use iterative feasible general nonlinear least squares (IFGNLS) esti-

mator. Because the equations in the system are sequential in nature, the feedback of the error terms

goes only in one direction and the system is not truly simultaneous. Stage 1 inputs do not depend

on any realized production shocks, and only contain household or plot-level unobservables that can

potentially correlate with future production shocks. Stage 2 inputs depend on realization of stage

1 production shocks only. Stage 3 inputs depend on realization of production shocks in stages 1

and 2. Composite production function, or yield equation, depends on realization of production

shocks in all three stages. However, the system is not recursive because of possible unobserved

error components discussed in section 3. We estimate the model with Sisaket province data. We

then use Burirum data to evaluate model’s accuracy in predicting out of estimation sample.

Before we present the estimates, we look at yield variation present in the data. Table 4 shows
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variation of yields in each province depending on the initial conditions and the amounts of inputs

used in production. For each variable listed in column 1, we split the sample into two groups,

one with the value of that variable below 40th percentile for the province and the other above

60th percentile for the province. We then do mean comparison tests of mean yields for these two

groups. Column 2 shows mean yield for the above 60th percentile group, column 3 shows mean

yield for the below 40th percentile group, and column 4 shows the difference in means between

the two groups. Columns 5, 6 and 7 show, respectively, the t statistic, one-sided p-value for null

hypothesis that mean yield for above 60th percentile group is greater than mean yield for below

40th percentile group, and one-sided p-value for the reverse null hypothesis of test comparing

group one mean yield and group two mean yield.19 The results of this data summary exercise

are both intuitive and informative. All inputs correspond to expected and significant variation in

yields: yields are higher on plots with better soil, more fertilizer use in both stages 1 and 2, planted

with seedlings rather than seeds, and more labor use in all stages. Higher use of labor in stage 3 -

that is, for harvesting - corresponds to particularly large increase in yields. Interestingly, yields are

lower on plots with larger cultivated area.

Table 5 performs the same data summary exercise, this time looking at variation of yields

across rain and temperature realizations. The structure of table 5 is the same as that of table 4.

Stage measures of rain and temperature are plot- and year-specific and depend on stage timing on

a given plot in a given year. Rain is measured as mean of daily rain, in millimeters, over each

stage. For example, if on a given crop-plot stage 1 took place in June of 2004, then stage 1 rain

for that plot is mean of daily rain in June 2004. Temperature is measured as mean of maximum

daily temperature, in degrees Celsius, over all months in a given stage. Comparison of mean yields

is performed once again between two groups, one with weather variable’s measure above 60th

percentile for the province, and the other with weather variable’s measure below 40th percentile

for the province. Several results here are of note. First is the large correspondence between higher

stage 1 rain and higher yields in Sisaket province, and lack of it in Burirum province. Second is the

pronounced negative correspondence between temperature and yields, present in both provinces.

Third is the absence of significant correspondence between stage 2 rainfall and yields. These

preliminary results suggest that the effect of rainfall on yields is less straightforward than could be

expected. Comparing tables 4 and 5, it is interesting to note that variations in weather realizations

correspond to noticeably smaller differences in yields than variations in input amounts.

Table 6 shows estimates of the structural coefficients of the model. First three rows show esti-

19The exception are rows "seedlings vs. seeds" and "used chem. fert. in stage 1". These variables are one-zero

indicators. Correspondingly, "below" group for these rows has indicator equal to zero (meaning "seeds" and "no

chem. fert. in stage 1"), and "above" group has indicator equal to one (meaning "seedlings" and "did use chem. fert.

in stage 1").
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mates of elasticities of substitution, which are significantly different from unity (the Cobb-Douglas

case) in all three stages. Note the low elasticity of 0.2 for stage 1, which suggests that initial con-

ditions, such as soil quality, are hard to compensate for with use of inputs. Thus heterogeneity

in soil quality will inevitably lead to heterogeneity in yields. Stage 2 elasticity of 0.5 suggests a

fair trade-off between stage 1 intermediate output, or how well young seedlings are developing

after (trans)planting, and stage 2 production operations such as fertilizer application and weeding,

as well as stage 2 weather realizations. Stage 3 low elasticity of 0.02, which is not significantly

different from zero, is also intuitive. Stage 3 corresponds to harvesting operations, and if the crop

hasn’t developed, no amount of harvesting labor can compensate. Similarly, if no labor is em-

ployed to harvest the crop, the yields will be zero despite the presence of developed crop. This last

result underscores large effect of harvesting labor on yields observed in preliminary data analysis

in table 4. Overall, elasticity estimates suggest that stage 2 is the most opportune period for farmer

to alter the course of his crop’s development and impact expected yields.

Measures of initial condition include cultivated area and soil quality measures. Positive and

significant coefficient estimate for organic matter confirms the expectation that soil quality has

positive effect on crop cultivation. It also appears that larger plots enjoy higher yields. Stage 1

intermediate output is approximated by DSSAT measures of plot development and stage 1 labor,

as discussed in section 4. Similarly, stage 2 intermediate output is approximated by DSSAT mea-

sures of plot development and stage 2 labor. For both stage 1 and stage 2 intermediate outputs,

DSSAT measures are positive and significant. This is intuitive and means that healthier crop at

the beginning of production stage contributes to better crop development during each stage. Note

that in both stages, labor used in previous stage is also statistically significant as a proxy for pre-

vious stage output. These results suggest that, on one hand, DSSAT measures accurately crop’s

development and nonlinear interactions of non-labor inputs, soil quality, and weather realizations.

On the other hand, accounting for only non-labor inputs into crop cultivation is not sufficient to

capture farmer- and plot-specific crop development. Variation in labor input plays a significant

role. This result underlines the danger of relying on biophysical simulations of yields alone when

analyzing variations in yields in general, and in response to changes in weather realizations and

climate change in particular.

Weather shock is approximated by rain, rain squared, maximum daily temperature, and inter-

action of rain and temperature, by stage. As expected, the effect of weather shock is particularly

pronounced in stage 1, when crop is planted. Estimates also confirm the importance of accounting

for temperature when measuring the effect of rainfall on crop development, rather than rainfall

alone, and the nonlinear nature of their interaction. Interestingly, estimates for stage 2 are not sig-

nificant. Our estimates suggest that elasticity of substitution in stage 2 is highest out of all three
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Table 6: Coefficient Estimates of Model Parameters

Variable group Variable Coefficient St. error

Elasticity Stage 1 elasticity 0.197*** 0.040

Stage 2 elasticity 0.488*** 0.055

Stage 3 elasticity 0.018 0.056

Initial condition Area (ha) 0.770*** 0.019

CEC (meq/100g) -0.066 0.044

Organic matter (%) 0.082*** 0.029

Stage 1 output Number of tillers (DSSAT) 0.474*** 0.069

Leaf weight (kg/ha) (DSSAT) 0.175 0.107

Stage 1 labor (hrs/ha) 0.300*** 0.055

Stage 2 output Grain filling (DSSAT) 0.405*** 0.042

Stage 2 labor (hrs/ha) 0.043** 0.019

Stage 1 weather Rainfall (mm) -0.660** 0.287

Rainfall squared 0.008*** 0.002

Max daily temperature -2.621*** 0.637

Rain*temperature 0.155* 0.081

Stage 2 weather Rainfall (mm) 0.052 0.220

Rainfall squared -0.001 0.001

Max daily temperature -0.303 0.498

Rain*temperature -0.017 0.066

Stage 3 weather Rainfall (mm) -0.443 0.312

Rainfall squared 0.010** 0.004

Max daily temperature 0.299** 0.130

Rain*temperature 0.120 0.101

Stage 1 inputs Labor (hrs/ha) -0.258*** 0.035

Chem. fert. (kg/ha) -0.065 0.045

Seedlings (sets/ha)a 0.065** 0.028

Seeds (kg/ha) -0.211*** 0.038

Stage 2 inputs Labor (hrs/ha) 2.471*** 0.673

Chem. fert. (kg/ha) -0.856*** 0.180

aOne set contains about 100 seedlings.

***, **, and * denote, respectively, significance at 1%, 5%, and 10% level.
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stages, while effect of weather shock on yields is lowest in stage 2. This result, again, suggests

that stage 2 gives most opportunities for the farmer to improve his yields beyond levels that can be

expected given his plot’s soil quality and concurrent year’s aggregate weather realizations.

The last two parts of table 6 show coefficient estimates for stage 1 inputs and stage 2 inputs. As

expected given preliminary data exercise in table 4, planting of seedlings results in higher yields

and planting of seeds in lower yields. Coefficient estimate on stage 1 chemical fertilizer is not

significant. Negative and significant coefficient estimate for stage 2 chemical fertilizer can be

interpreted as indication of negative relationship between soil quality and yields. As we discussed

earlier in section 3, our measures of soil quality are imperfect and might have poor accuracy for

plots on which soil quality variables were not measured directly.

We next examine whether model prediction errors, measured as actual yield minus predicted,

correlate with main socio-economic data. We have data on whether the household is a member

of informal social network in the village, on household monthly per capita consumption, and on

household’s monthly borrowing. In Sisaket province, 87 percent of sample households are part

of their village’s informal network; the number for Burirum is 80 percent. For network, we use

direct measure of kinship that is not based on transactions, but on whether or not individuals in a

given household are related by blood or marriage to the individuals in any other household, as of

the time of the initial 1998 village census. We examine how model prediction error correlates with

per capita household consumption and borrowing at different periods of the crop growth cycle,

and whether these correlation patterns differ for households that are part of the informal networks

and those that are not. We first remove the household fixed effect from model prediction error, to

eliminate any potential household-level bias from correlation analysis.

Table 7 shows correlations of model prediction error with borrowing variables. We con-

sider three types of borrowing: any incidence of borrowing, borrowing used to rollover debt, and

"bridge" borrowing. Rollover and "bridge" borrowing are the same in nature, in that new loan is ac-

quired to pay off maturing debt (these measures come from Sripakdeevong and Townsend, 2012).

The difference is that "bridge" borrowing involves an additional party. Rollover borrowing means

making new loan with the same lender to cover maturing debt, and "bridge" borrowing means tak-

ing out new debt with a third party to pay off maturing debt with original lender. "Bridge" loans

constitute a more extreme version of borrowing and can be thought of as most indicative of credit

constraints. We aggregate household’s monthly borrowing data over five stages. Stages 1 through

3 correspond in time and order to the three production stages. Stage 0 covers three months before

beginning of crop cultivation. For example, if for a given crop-plot production stage 1 started in

June, stage 0 for this household is March through May of that year. Stage 4 covers three months

after the end of crop cultivation activities. Columns 1 and 2 show correlations for households
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not in the village network. Column 1 shows correlations with fractions of rollover and "bridge"

borrowing out of total amount borrowed over a given time period. Column 2 shows correlations

with zero-one indicators for overall borrowing, rollover, and "bridge" borrowing. Columns 3 and

4 show correlations with, respectively, borrowing fractions and indicators, for household in the

village network.

For no-network households, there is no correlation of model prediction error with borrowing

variables. One stark exception is large positive correlation of 0.2 with overall borrowing indicator

in stage 3. It implies that no-network households that have higher yields than model predicts are

quite likely to borrow during harvest stage. One possible interpretation is that households that

experience large potential yields are in need of a lot of labor for harvesting. If these households

are not in the village network, they cannot rely on the informal network to provide the necessary

resources either directly in form of exchange labor or indirectly in form of financial resources to

use for hiring labor. Their only recourse is to borrow money. If they do borrow, they are able

to hire labor for harvesting, and their potential high yields are realized. Note that we observe a

significant and positive correlation of model prediction error with borrowing indicator in stage 3

for households in the village network (column 4); however, the magnitude of this correlation for

network households is three times lower than that for no-network households. This suggests that

both network and no-network households experience same resource demands in the harvesting

stage, however, network households are able to satisfy these demands to a large extent through the

informal network, while no-network households have no such alternative to borrowing. For house-

holds in village network, there is also significant negative, albeit small in magnitude, correlation

of model prediction error with overall and rollover borrowing in stage 1. It implies that network

households that have lower yields than model predicts are likely to rollover loans during planting

stage. In other words, these households were relatively credit constrained during planting stage,

and they subsequently had lower yields. These results seem to indicate that informal networks

provide an important but incomplete mechanism for alleviating credit constraints.

Table 8 shows correlations of model prediction error with per capita household consumption.

Table 8 has the same structure as table 7. Consumption is aggregated over five stages, stages 1

through 3 corresponding to the three crop cultivation stages, and stages 0 and 4 corresponding, re-

spectively, to three months before the start and after the end of cultivation process. Column 1 shows

correlations for households not in the village network, and column 2 shows correlations for house-

hold in the village network. We consider three measures of household consumption: consumption

of household’s own production, consumption expenditure by household on goods not produced

by the household, and total household consumption which is the sum of the two. All three con-

sumption measures are per capita. There is strong positive correlation of model prediction error
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Table 7: Correlation of Model Prediction Error with Borrowing, by Stage

No network In network

Statistic Fraction Indicator Fraction Indicator

Stage 0 (three months before planting)

Borrowing corr. 0.0762 0.0086

p-value 0.2909 0.7497

Rollover corr. -0.0221 -0.0221 -0.0071 0.0152

p-value 0.7598 0.7598 0.7939 0.5735

"Bridge" corr. 0.0128 0.0128 -0.0024 -0.0127

p-value 0.8599 0.8599 0.9300 0.6392

Stage 1 (planting)

Borrowing corr. -0.088 -0.0729*

p-value 0.2212 0.0068

Rollover corr. -0.0053 -0.0053 -0.049 -0.0536*

p-value 0.9415 0.9415 0.0694 0.0468

"Bridge" corr. -0.0053 -0.0053 -0.0414 -0.0414

p-value 0.9415 0.9415 0.1250 0.1250

Stage 2 (intermediate crop growth stage)

Borrowing corr. 0.0254 -0.0209

p-value 0.7248 0.4399

Rollover corr. -0.0484 -0.0569 0.0111 0.0103

p-value 0.5016 0.4291 0.6798 0.7029

"Bridge" corr. -0.0558 -0.1004 -0.0103 -0.0088

p-value 0.4386 0.1626 0.7015 0.7457

Stage 3 (harvesting)

Borrowing corr. 0.1970* 0.0660*

p-value 0.0058 0.0144

Rollover corr. -0.0012 0.0055 0.0134 0.0212

p-value 0.9866 0.9387 0.6184 0.4322

"Bridge" corr. 0.0465 0.0748 0.0101 0.0297

p-value 0.5189 0.2986 0.7089 0.2719

Stage 4 (three months after end of harvesting)

Borrowing corr. 0.0901 0.0114

p-value 0.2227 0.6832

Rollover corr. 0.0292 0.0151 -0.0621* -0.0457

p-value 0.6932 0.8380 0.0261 0.1019

"Bridge" corr. 0.0559 -0.0080 -0.0499 -0.0390

p-value 0.4497 0.9140 0.0736 0.1623

* denotes significance at 5% level.
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with consumption for no-network households in four out of five year segments, with correlations

approximately around 0.14-0.19. In contrast, for network household there is significant but much

lower in magnitude (up to four times lower) correlation for stage 0, significant negative correlation

of -0.05 for stage 1, and no significant correlation for remaining year segments. It seems clear

that for no-network households consumption correlates positively with yields, while for network

households this correlation is much weaker and present only in pre-planting stage. One interpre-

tation is that network households are able to smooth consumption through the informal network,

while no-network households have no alternative smoothing mechanism. Ability of informal net-

works to smooth consumption is weakest at pre-planting stage, when expected future yields are

most removed in time.

Table 9 also shows correlations of model prediction error with per capita household consump-

tion; here, consumption is aggregated by calendar quarters rather than by stages. The main dif-

ference between tables 8 and 9 is that the former takes into account variation in timing of crop

cultivation activities between households and across years, while the latter aggregates household

consumption over the same time periods for all households. The latter table also includes correla-

tion of model prediction error with aggregate quarterly village consumption. Columns 1 and 2 of

table 9 show correlation with per capita household consumption, respectively for no-network and

network households. Columns 3 and 4 show correlation of model prediction error with aggregate

village consumption, respectively for no-network and network households. These results confirm

results from table 8. Per capita household consumption correlates positively and significantly with

model prediction error for no-network households, with correlation coefficients ranging from 0.15

to 0.22. In contrast, there is no significant correlation for network households. Moreover, aggregate

village consumption does not correlate with model prediction error for no-network households,

but correlates significantly for network households. These correlation results provide evidence

that informal networks are a substantial consumption smoothing mechanism for rice cultivating

households. We return to this in section 7, at the end.

There is also a correlation of model prediction error with yields, of approximately 0.11. We

surmise that household know something about the evolution of the state of the plot which we do

not see despite the richness and detail of our data. But our data are too limited to incorporate this

new aspect into the model without putting an enormous amount of structure on the problem.

We next use the model to gauge the importance of rainfall versus other factors in yield variation

between crop-plots and households. There are three main sources of yield variation. Weather, and

rainfall in particular, is one. Predetermined heterogeneity in soil quality is another. Household’s

choice of planting timing and input amounts is the third source. Household’s choice of timing

affects the effective rainfall shock for a given crop-plot. We perform the following exercise. We
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Table 8: Correlation of Model Prediction Error with Per Capita Hhd Consumption, by Stage

Statistic No network In network

Stage 0 (three months before planting)

Total cons. corr. 0.1888* 0.0528*

p-value 0.0041 0.0434

Own cons. corr. 0.0369 -0.0193

p-value 0.5774 0.4622

Cons. expenditure corr. 0.1847* 0.0554*

p-value 0.005 0.0344

Stage 1 (planting)

Total cons. corr. 0.0317 -0.0102

p-value 0.6321 0.695

Own cons. corr. 0.1174 -0.0517*

p-value 0.0749 0.0472

Cons. expenditure corr. -0.0058 -0.0024

p-value 0.9298 0.9253

Stage 2 (intermediate crop growth stage)

Total cons. corr. 0.1643* -0.0084

p-value 0.0124 0.7474

Own cons. corr. 0.0925 -0.0137

p-value 0.1613 0.6006

Cons. expenditure corr. 0.1567* -0.0059

p-value 0.0172 0.8215

Stage 3 (harvesting)

Total cons. corr. 0.1077 -0.0203

p-value 0.1026 0.4367

Own cons. corr. 0.1355* -0.0269

p-value 0.0397 0.3019

Cons. expenditure corr. 0.0669 -0.0182

p-value 0.3112 0.4866

Stage 4 (three months after end of harvesting)

Total cons. corr. -0.0513 -0.0303

p-value 0.4377 0.2477

Own cons. corr. 0.0416 0.0116

p-value 0.529 0.6573

Cons. expenditure corr. -0.0614 -0.0325

p-value 0.3529 0.2145

* denotes significance at 5% level.
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Table 9: Correlation of Model Prediction Error with Consumption, by Quarter

Hhd per capita Village aggregate

Statistic No network In network No network In network

1st quarter

Total cons. corr. 0.0521 -0.0013 0.0355 0.0483

p-value 0.4306 0.9615 0.5918 0.0638

Own cons. corr. 0.0864 -0.0126 -0.0451 -0.0109

p-value 0.1908 0.6306 0.4951 0.6767

Cons. expenditure corr. 0.043 0.0003 0.0537 0.0583*

p-value 0.5159 0.9923 0.4167 0.0255

2nd quarter

Total cons. corr. 0.2210* 0.0333 0.067 0.0517*

p-value 0.0007 0.2021 0.3106 0.0473

Own cons. corr. 0.0833 -0.0508 -0.0097 -0.0095

p-value 0.2071 0.052 0.8833 0.7153

Cons. expenditure corr. 0.2074* 0.0379 0.0754 0.0607*

p-value 0.0015 0.1466 0.2538 0.0199

3rd quarter

Total cons. corr. 0.0867 -0.0328 -0.0355 -0.0538*

p-value 0.1892 0.2088 0.5918 0.0392

Own cons. corr. 0.0908 -0.0303 -0.0285 -0.0194

p-value 0.169 0.2461 0.6665 0.4567

Cons. expenditure corr. 0.0567 -0.0256 -0.0249 -0.0502

p-value 0.3909 0.3268 0.7067 0.0543

4th quarter

Total cons. corr. 0.1560* -0.0178 0.0862 -0.0434

p-value 0.0177 0.4963 0.1918 0.0958

Own cons. corr. 0.0902 -0.0508 -0.0036 -0.0159

p-value 0.1721 0.0515 0.9561 0.5431

Cons. expenditure corr. 0.1486* -0.0095 0.1093 -0.049

p-value 0.0239 0.7146 0.0974 0.0605

* denotes significance at 5% level.
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first plot kernel density of actual sample yields, after taking out the household fixed effect. This

is the black solid line in figure 6 for Sisaket province and in figure 7 for Burirum province. It

is obvious that there is a lot of heterogeneity in yields in each province. We next predict yields

with our estimated model, take out the household fixed effects, and plot the kernel density of these

predictions. This is the green long dash (_ _ _) line in figures 6 and 7. We see that the model does

a good job in explaining existing heterogeneity in yields, both for Sisaket sample, which was used

to estimate the model, and, notably, for Burirum sample as well. This latter result suggests that

our model estimates can be used to make plausible yield predictions out of sample and for other

rainfed rice growing regions in Thailand.

Next we exclude part of the third source of heterogeneity, namely, variation in household’s

choice of input amounts, by using province-year means of labor, seeds, seedlings, and chemical

fertilizer to predict yields with the model. This is the red dotted (...) line in figures 6 and 7. It

captures variation in yields due to difference in timing, rainfall realizations, and soil quality. We

see that it explains noticeably less of the yield variation. Next, we also exclude variation in soil

quality, by using province-year means of area, soil variables, labor, seeds, seedlings, and chemical

fertilizer to predict yields with the model. This is the blue dash-dot (_..._) line in figures 6 and

7. It captures variation in yields due to difference in timing and rainfall realizations only. It

is clear that while this is an important source of yield variation, it fails to explain large part of

heterogeneity present in the data in both provinces. This exercise illustrates that while factors

largely out of farmer’s control, such as rainfall and soil quality, are important sources of yield

variation, other factors that are directly controlled by the farmer, namely, input amounts used,

contribute significantly to yield heterogeneity. An analysis of variation in yields that does not

account for farmers’ response to production conditions through their choice of input amounts is

likely to significantly underestimate the resulting variation in yields.

Finally, we construct a "weather index" for our sample, by regressing yields on measures of

rain, rain squared, temperature, and interaction of rain and temperature in all three production

stages, 12 weather variables in total, as well as village indicators, for each of the two provinces.

We then predict yields with this simple OLS regression, and take out the household fixed effect.

This "weather index" measure of predicted yields is based on standard ways weather indices are

constructed in weather-based index insurance contracts. Note that our "weather index" benefits

from plot-specific timing of production stages, information that would not typically be available

or utilized in standard weather indices. The orange short dash (- - -) line in figures 6 and 7 cor-

responds to our version of "weather index". We see that it explains substantially less variation

than even our most constrained model-based prediction, which allowed only for rainfall and tim-

ing variation, both in Sisaket and especially in Burirum province. This last result illustrates that
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even when focusing only on one source of yield variation, namely, rainfall and timing, simple

linear approximation captures noticeably less of yield variation present in the data than structural

approach.

In sum, yields data contain a lot of heterogeneity, a substantial part of which is due to household-

specific production choices and plot-specific soil quality. An important and interesting question is

how these sources of heterogeneity interact with climate change. We next use the model to analyze

the effect of climate change on yields.

6 Climate Change Impact

To analyze the effect of climate change on rice yields, we integrated our estimated economic model

with DSSAT, climate change models, and weather generation model.20

We simulated future "synthetic" weather from the widely used WGEN weather simulation

model (Richardson, 1981). The WGEN weather generation model begins by first calculating an

extensive set of statistical parameters describing the observed, historical 1972-2002 daily weather

data, including mean monthly amounts for all key input variables, as well as including proba-

bilities of wet days, probabilities of dry days, and within-year precipitation variation. WGEN

then generates daily values for precipitation, maximum and minimum air temperature and solar

radiation for an N-year period at a given location. The precipitation component of WGEN is a

Markov-chain–gamma-distribution model. The occurrence of wet or dry days is generated with a

first-order Markov-chain model in which the probability of rain on a given day is conditioned on

whether the previous day was wet or dry. We generated 100 stochastic weather year realizations

based directly on the statistics computed for the historical, 1972-2002 observed weather data. We

refer to these weather realizations as describing a "neutral" scenario, assuming that future climate

will be a direct, linear extension of the late 20th century. To generate future weather with SRES

climate change scenarios, we inputted future changes to monthly precipitation and temperature and

drew 100 realizations for each scenario.

For the analysis of climate change effect, we selected a subsample of 83 plots in Sisaket

province21. For each of these 83 plots, we used estimated model together with DSSAT to pre-

dict yield under each weather realization in each of the three considered climate scenarios.

We first used actual data to estimate farmers’ timing decision. As discussed in section 4, in

20For all analysis in this section, we have used province-level rainfall data, rather than village-level data. The reason

is that weather generator requires long time series of historical weather data in order to generate synthetic weahter for

the area, and such data are available only on province level.
21We could not perform the analysis on the whole sample due to computational constraints.

42



our data timing choice effectively reduces to the choice of starting month for the crop cultivation

process. We postulated that farmer’s choice of when to start crop cultivation depends on cultivated

area and on observed rain and temperature realizations at the beginning of the current year and

during previous crop growth cycle. Using the whole sample and actual weather realizations, we

regressed actual calendar month corresponding to beginning of stage 1 on plot’s cultivated area,

rain and temperature in January through March of current calendar year, and rain and temperature

in April through December of the previous calendar year. We then used the resulting equation to

predict starting month for a given plot for each synthetic weather realization under each climate

scenario. Because this approach uses lagged data, we end up with 99 observations per plot per

climate scenario. Table 10 shows the distribution of starting month for crop cultivation process in

actual data, and predicted starting month for each of the three climate scenarios. It appears that

cultivation activities started on average one month later under high emissions scenario compared

to neutral climate scenario, with no substantial difference between low emissions and neutral cli-

mates. Using these timing predictions, we constructed plot-specific timing of stages, assuming that

stage 1 lasts one month, stage 2 lasts two months, and stage 3 lasts two and a half months. Using

actual data, we estimated output prices as a function of concurrent monthly measures of rain and

temperature, 11 monthly lags of rain and temperature, and indicators for calendar month. Using

actual data, we also estimated factor prices as functions of calendar month indicators, and inter-

action of month indicators with monthly rain and temperature. We then used these estimates to

predict output and factor prices with synthetic weather data for each of the three climate scenarios

we consider.

Table 10: Distribution of First Month of Production Process

Number of obs. with a given month out of total (percent)

Calendar month Actual data Neutral climate High emissions Low emissions

3 0.72 0.09 0.33

4 0.05 4.41 1.68 2.08

5 5.29 36.30 17.52 25.08

6 25.82 35.26 42.78 40.95

7 40.05 18.85 25.42 22.34

8 26.46 4.24 10.90 8.31

9 2.33 0.23 1.58 0.90

10 0.02

We next alternated between the model and DSSAT, first predicting stage 1 inputs with the

model, then using these predictions to simulate DSSAT with synthetic weather, then using these

DSSAT predictions as measures of intermediate stage 1 output to predict stage 2 inputs with the
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model, then using these predictions to simulate DSSAT with synthetic weather, and then using

these DSSAT predictions as measures of intermediate stage 2 output to predict stage 3 inputs with

the model. Having now plot-, stage-, and weather realization-specific predictions of inputs and

weather shocks, we use the model one final time to predict yields. We repeated these steps for

our subsample of 83 plots for 99 weather realizations under each of the three climate scenarios.

As a result, we had 99 yield realizations per plot per climate scenario. This approach combines

DSSAT’s detailed modeling of complex soil and weather interactions with crop growth, and our

model’s structure of farmer’s production choices. It also allows for variation in timing of produc-

tion activities both across climates and with a given climate for different weather realizations.

We first provide a summary of the two alternative climate changes that we consider - the high

and low emission scenarios. Table 11 uses 100 weather realizations generated by WGEN for each

climate scenario to compare high and low emission climate scenarios to the neutral scenario.

Panel A of table 11 compares amounts of daily precipitation and panel B compares average

temperature during daylight hours. In each panel, the second column contains mean daily values

for each month under the no change, neutral climate scenario. The next three columns address shift

from neutral to high-emissions climate. Column three shows the corresponding change in mean

daily values, column four expresses this change in percent, and column five shows the probability

value for the mean test on the equality of daily precipitation under neutral and high-emissions cli-

mates. In the same manner, columns six through eight address shift from neutral to low emissions

climate, and columns nine through 11 address shift from low emissions climate to high emissions

climate.

Climate change is more extreme under high emissions scenario. While daily temperatures

increase under both climate scenarios, the magnitude of increase under high emissions climate is

about 40 percent higher. Daily precipitation increases throughout the year under low emissions

climate. On the other hand, under high emissions climate there is less rain in the second half of the

year, starting in June, which is exactly the period of rice cultivation. Thus low emissions climate

change brings moderate increase in temperature and more rain, while high emissions climate bodes

both higher increase in temperature and less rain for rice cultivation.

It would be intuitive to expect decrease in yields under both climate change scenarios relative

to neutral climate, and to expect larger decrease in yields under high emissions scenario than under

low emissions scenario. We compared predicted yields under the three climate scenarios for each

of the 83 plots. While the former intuitive conjecture appears to hold, the latter does not apply for

large part of our sample. We find that while for some plots yields are substantially lower with high

emissions climate compared to both neutral and low emissions climates, for other plots there is no

substantial difference between yield distributions under high and low emissions climates. Figures 8
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and 9 illustrate this point. Each of these figures shows kernel densities of yields under neutral, high

emissions, and low emissions climate scenarios for one of the plots in our sample. The difference

in the effect of climate change on yield distribution for these two plots is starking. While there

is progressive decrease in mean yields from neutral to low emissions, and from low emissions to

high emissions climates for the plot in figure 8, there is no decrease in mean yields between low

and high emissions climates for plot in figure 9. The difference between the effects of the same

climate change for the two plots doesn’t stop there. The way the shape of yield distribution changes

between climates is noticeably deferent for the two plots. For both plots, yield distributions under

neutral and low emissions climates are somewhat centered, and become skewed to the right under

high emissions climate. However, this skewness to the right is barely noticeable for the plot in

figure 9, while being very pronounced for the plot in figure 8. The patterns displayed in both

figures 8 and 9 are typical for large parts of our sample, with some in-between cases. It is clear that

heterogeneity in yields for plots experiencing common aggregate weather shock that is present in

actual data is going to persist under climate change.

Figure 8: Kernel Density of Predicted Yields, by Climate Scenario

Figure 10 provides additional evidence of heterogeneity in yields under a given climate sce-
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Figure 9: Kernel Density of Predicted Yields, by Climate Scenario
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nario. It shows kernel densities of yields under neutral climate for three plots in our sample. Faced

with the same aggregate weather shocks, these three plots from the same geographical area experi-

ence completely different yield distributions. Clearly the mean yields are different across different

plots, though this may be due in part to plot specific fixed effect. Beyond that, one can see the plot

in solid lines has more mass in both tails, and comparing the other two, one has more mass at least

in the right tail.

Figure 10: Kernel Density of Predicted Yields under Neutral Climate Scenario, by Plot

7 Specific Comments on Insurance

The meteorological variables we used in figures 6 and 7 are often used in the design of rainfall

insurance products to determine how yields vary with rain/temp, or more specifically to determine

stress thresholds (typically, these vary with crop and agricultural zone). The appeal of these risk

products is that they are based on exogenous variables over which an individual farmer has no

control, seemingly mitigate the well know moral hazard problems of direct crop insurance (Skees,

Hazell, and Miranda, 2012).
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If we were to generalize the model of this paper to allow explicit consideration of insurance,

in future work, we would not take households as firms to be risk neutral, as a primitive. A deeper

premise/rationalization of the current “risk neutral” specification, though, is that there is an as-if-

equivalent-complete set of markets and institutions with a village, or better put with a tambon (in

particular the four villages which constitute for us a provincial sample). Thus up to but not includ-

ing aggregate shocks, production decisions separate from household decisions. That is, for within

tambon idiosyncratic shocks, it is as if the crop produced and sold forward at state contingent

input and output prices, with enough variation across idiosyncratic shocks, or the way seemingly

aggregate shocks impact individual plots and households, that prices are equal to probabilities.

That is, as in the standard CAPM all idiosyncratic risks are pooled to have zero mean and there is

no risk premium. There is evidence in the papers of Bonhomme, Chiappori, Townsend, and Ya-

mada (2012), Chiappori, Samphatharak, Schulhofer-Wohl, and Townsend (2012), and Kinnan and

Townsend (2012) that there is something close to full insurance in consumption and labor supply,

especially for households in kinship networks, controlling for aggregate shocks and evidence from

Samphantharak and Townsend (2010) that the CAPM does remarkable well in pricing aggregate

risk. As for what constitutes an aggregate shock, this is not a seemingly common rainfall shock

itself, but rather a move in aggregate consumption, something which the tambon itself cannot in-

sure. That part of risk should be included in consumption based stochastic discount factors, unlike

the current model which uses expected outside market prices.

As described in the paper, we analyzed the correlation of predictions errors of our current

model with consumption and other variables, to see if some of our maintained assumptions are

a reasonable approximation and where the model will need to be improved. Here the results are

somewhat reassuring especially for the collections of households in a village that are part of a

kinship networks. Relative to households not in networks, household specific consumption is

far less correlated with prediction errors, if at all. Further for those in networks it seems that

the correlation is with aggregate consumption. For those without networks the correlation with

own household consumption is substantial, and as one might predict for households with limited

financial markets, there is no pattern with the aggregation consumption (and no reason to be in risk

sharing since the null is that such households do not share risk). One reading of the correlation

with debt and roll over loans provides a similar story. Household out of networks might be credit

constrained, while those in networks less so.

The current model thus offers some possible lessons for the design of rainfall insurance prod-

ucts, assuming that the heterogeneity results would be robust to a consumption based utility model.

This discussion here begins as if households were in financial autarky or faced limited credit and

insurance markets. Again, this is most relevant for households not in a kinship network. We
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then move the discussion toward insurance at the tambon level for those in internal risk sharing

networks.

Even with the advantage of knowing stages of operation, the simple rainfall index model is

designed around the median or modal household in the sample, missing the large mass of household

who do better or worse, not just on average but with different impact of weather (i.e., each with

his/her own histogram). The same is true for prediction for the out of sample Burirum projection

in figure 7.

Thus, extrapolating even further out of sample to new provinces with the Agricultural Census,

using rainfall and temperature data, begs the question of variables that are available and how well

one could do. Data on area planted and fertilizer use is helpful, and this is available in Thailand

at the level of "holder” in a cross section. But as model comparisons indicate, these predictions

are like too peaked. And we cannot even control for household fixed effects without a reasonable

panel.

Another point about insurance and our no-network households. First, labor and other costly

inputs determine output, not just rain, and if households respond to rain in a given stage with

endogenously chosen labor, then there is a human response. Unlike Goodwin and Mahul (2004),

Kapphan (2012), Mahul (2001), and Musshoff, Odening, and Xu (2009), one cannot simply regress

yields on weather and expect that part to remain fixed when part of the yield variation due to rain

is introduced in earlier stages. According to our current model, households change inputs.22

Again, insurance products have to be designed for each farmer, or at least for groups of farmers

with identical technologies that experience weather shocks in the same way. One product does not

fit all. Indeed consistent with the mixed experience on take up, it may be this is the real "basis" risk

which explains limited take up. In other words it is not that the product uses measurements from

some distant rain gauge. Rather the problem is the heterogeneous impact of a “common” shock

within the village.

With risk sharing networks it’s tempting to jump to the conclusion that one should aggregate

yields and use simple index products based on the correct mean. However, this intuition is not

correct. What needs to be insured is the variation on individual crop plots (or variation on groups

of crop plots which are otherwise identical). It would be as if there were a representative house-

hold farming all of the plots which has an objective the maximization of expected utility. Then one

can aggregate consumption and aggregate labor supply in terms of utility consequences and the

modeling of choices. But one should not aggregate up over technologies which are distinct due to

22Likewise a well design insurance product should take into account variation in input and state of the crop plot at

each stage, as final yields are not a simple additive function of all the variation. To the extent that some insurance

product vary payoff by rain by stage, with multiple stages, this we agree that is a move in the right direction.
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heterogeneity in soil and so on. That is, it would be a mistake to use average soil quality since that

is an input into few if any production technology. The representative household assigns its “house-

hold” labor and purchases input to various distinct technologies. In short one still needs good

approximations to technologies, to take into account production heterogeneity which is apparent

in this paper.

The discussion on insurance against climate change draws on the above discussion. For a

given, new climate, the demand for insurance will be a function of heterogeneity in the distribution

of yields, as above. Insurance bought ex ante against future climate change has to do with the di-

rection of shift of distributions. Again there is heterogeneity in at least the magnitude of downward

shifts, with some plots (household) experiencing a more severe impact from high emissions than

others who experience relatively little.
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